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History

In his article ”Faisccaux algebraice coherent” (1955), Serre asked
whether finitely generated projective modules over the ring
A = K [x1, · · ·, xn] (commuting indeterminates) are free.

This became known as ”Serre’s conjecture”. Serre’s conjecture
induced intensive research activity in algebraic geometry. There is
even a book by Lam devoted entirely to the origins and implications
of this conjecture.

Note that projective modules over K [x1] are always free as K [x1] is a
principal ideal domain.

C.Seshadri (1958): Serre’s conjecture holds when A = K [x1, x2].

Quillen in USA and, independently, Suslin in Soviet Union (1976):
Serre’s conjecture holds for any n ≥ 1.

Sharma, Ojunguran and Sridharan (1971): Serre’s conjecture is false
for K [x1, · · ·, xn] if K is a division ring and n ≥ 2.
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A Conjecture

We wish to explore the following Statement (conjecture?): The
Serre’s conjecture property distinguishes the Leavitt algebras
Ln := L(1, n) among Leavitt path algebras LK (E ) of finite graphs.

In other words, ”If E is a finite graph, then finitely generated
projective modules over LK (E ) are free <=> LK (E ) ∼= Ln for some
n ≥ 0”.
As we shall see, this conjecture sits between (i) the algebraic
Kirchberg-Phillips problem [ namely: Two purely infinite simple LPAs

of finite graphs LK (E ) ∼= LK (F ) ⇔ K0(LK (E ))
φ∼= K0(LK (F )) such

that φ([LK (E )]) = [LK (F )]] and
(ii) the Cuntz splice problem [ namely: L2 ∼= L2−, the LPA of the
Cuntz splice graph of the Rose graph R2]
We will also interpret the meaning of the Serre conjecture property
among graph C*-algebras and show that this property indeed
characterizes Cuntz algebras On among graph C*-algebras of finite
graphs.
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The Leavitt Algebra L(1,n)

Recall, the Leavitt Algebra L(1, n) over a field K where n ≥ 0 is
defined as follows:

L(1, 0) ∼= K ;

L(1, 1) ∼= K [x , x−1]

For n ≥ 2, L(1, n) =< {x1, · · ·, xn, y1, · · ·, yn :
n

∑
i=1

xiyi = 1 and, for all

1 ≤ i , j ≤ n, yixj = δij1} >.

Known Theorem : For all n ≥ 0, L(1, n) ∼= LK (Rn) where Rn is the
”Rose graph with n petals”

A basic reference: P. Ara, M.A. Moreno and E. Pardo,
Non-stable K-theory for graph algebras, Algebra reprsentation
Theory, vol. 10 (2007), 157 - 178.
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Ara-Bergman-Moreno-Pardo’s Theorem

Let R be a ring with 1. The set of isomorphism classes of finitely
generated projective left R-modules becomes an abelian monoid
under the operation [P ] + [Q ] = [P ⊕Q ] and is denoted by V(R).

Given a finite graph E , let ME = the abelian monoid

< {av : v ∈ E 0: av = ∑
e∈s−1(v )

ar (e) for all regular vertices v ∈ E 0} >.

Let 1E = ∑
v∈E0

av

Theorem 1: [2] Let E be a finite graph and L := LK (E ). Then

(i) ME

ϕ∼= V(LK (E )) defined, for all v ∈ E 0, by ϕ(av ) = [Lv ].
Moreover, ϕ(1E ) = [L].

(ii) If P is a finitely generated projective left L-module, then in V(L),
[P ] = [Lu1] + · · ·+ [Lum] for some finite number of vertices
u1, · · ·, um in E .

Corollary 2: The V-monoid V(LK (E )) is independent of the field K .
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An Easy Criterion

Proposition 3: Let E be a finite graph and and L = LK (E ). Every
finitely generated projective left/right L-module is free if and only if
for every u ∈ E 0, there is an integer k ≥ 1 (depending on u) such
that au = k1E in ME .

Proof: Sufficiency: Let P be any finitely generated projective left
L-module.
By Theorem 1, [P ] = [Lu1] + · · ·+ [Lun] where ui ∈ E 0 for
i = 1, · · ·, n.
By hypothesis, to each ui ∈ E 0 there is an integer ki ≥ 1 such that
aui = ki1E in ME

= > In V(L), [Lui ] = ki [L], by the iso ME

ϕ∼= V(LK (E )) in Theorem
1
= > [P ] = m[L] for integer m ≥ 1 in V(L)
= > [P ] = [L] + · · ·+ [L], so P is free.
Necessity: Let u ∈ E 0. As Lu is free, [Lu] = [L] + · · ·+ [L]. Then, in
ME , Theorem 1 implies au = k1E for some integer k .
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Theorem 4: Every finitely generated projective left/right module
over Ln := L(1, n) is free.

Proof: The result holds when n = 0 or 1, since L0 ∼= K and
L1 ∼= K [x , x−1], a P.I.D.. So assume n ≥ 2. Now Ln ∼= LK (Rn),
where Rn is the rose graph with n loops based at a vertex v . Consider
the monoid MRn . In the isomorphism
ϕ : MRn −→ V(LK (Rn)) = V(Ln), ϕ(1Rn) = [Ln] and
ϕ(av ) = [Lnv ]. Since Rn has only one vertex v , av = 1Rn and so
[Lnv ] = [Ln]. If P is any finitely generated projective Ln-module,
then Theorem 1(ii) implies that [P ] = k [Lnv ] = k [Ln], where k > 0.
Hence P = Ln ⊕ · · · ⊕ Ln is free.

Corollary 5: If a unital ring R is Morita equivalent to Ln, then
R ∼= Md (Ln) for some integer d > 0.

Proof: As f.g. projectives over Ln are free, R ∼= Md (Ln) by Corollary
18.36 in [3], where d > 0.
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Definition: Let M be an additive monoid. An order ideal I in M is a
submonoid with the property that, for each a, b ∈ M, a+ b ∈ I
implies a ∈ I and b ∈ I .

Proposition 8: ([2], Theorem 5.3) Let E be a row-finite graph.
There is an order-preserving bijection between the poset of order
ideals of ME and the poset of hereditary saturated subsets of vertices
in E [equivalently, the poset of graded ((gauge-invariant) ideals of
LK (E ) (C ∗(E ))]

Lemma 9: Let E be a finite graph. If every finitely generated
projective module over LK (E ) is free, then LK (E ) is graded-simple,
that is, LK (E ) has no non-zero proper two-sided graded ideals.

Proof: Let I be a non-zero order ideal of the monoid ME . Let au ∈ I
for some u ∈ E 0. By Proposition 3, au = k1E for some k ≥ 1. As I
is an order ideal, k1E = au ∈ I implies that 1E ∈ I . Consequently,
I = ME . Since, by Proposition 8, the order ideals of ME are in
bijective correspondence with the graded ideals of LK (E ), we
conclude that LK (E ) has no non-zero proper graded two-sided ideals.
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To get additional information about those LK (E ) over which finitely
generated projectives are free, we consider the following.

Definition: A cycle c is said to an extreme cycle, if c has exits and
for every exit e, there is a path connecting r(e) to some vertex w on
the cycle c . Intuitively, every path that leaves c can be elongated so
that the longer path returns to c .

Lemma 10: (Lemma 3.7.10, [AAS]) In a finite graph E , every vertex
connects to a sink or a cycle without exits or an extreme cycle in E .

Recall, a ring R is called purely infinite simple, if it is simple and
every non-zero one-sided ideal contains an idempotent e such that Re
is isomorphic to a proper direct summand of itself.

Leavitt proved that the Leavitt ring L(1, n) is purely infinite simple.
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Theorem 11: Let E be a finite graph. Let L := LK (E ). If every finitely
generated projective left/right L-module is free, then L is one of the
following:
1. L ∼= K ;
2. L ∼= K [x , x−1];
3. L is purely infinite simple with L =< c0 > where c is an extreme
cycle (and thus E contains cycles with exits, E 0 is downward directed,
contains no non-empty proper hereditary saturated subsets and every
u ∈ E 0 connects to a w ∈ c0). Further, for some positive integer n,
K0(L) ∼= K0(L(1, n+ 1)). Moreover,

(K0(L), [L]) ∼= (Z/nZ, 1) ∼= (K0(L(1, n+ 1)), [L(1, n+ 1)])

Kulumani M. Rangaswamy, University of Colorado, Colorado Springs.Serre Conjecture, Cuntz Algebras and Leavitt Algebras - Preliminary reportRings and Wings Seminar- October 27, 2021 11 / 21



Proof: Step 1: If E is just a single vertex {w}, then clearly L ∼= K .
Likewise, if E is just a single loop, then L ∼= K [x , x−1].

Step 2: Show that E contains no sinks and no cycles without
exits: (Basic idea: Existence of a sink or a no exit cycle contradicts
the hypothesis that, to each vertex u, au = k1E for some k > 0.)

So assume that the graph E is neither a single vertex nor a single
loop. This means that either E has at least two distinct vertices or E
has a single vertex u at which two or more loops are based. In the
latter case we are done since E will be the Rose graph Rm and
L = LK (Rm) will be purely infinite simple. So assume that |E 0| ≥ 2.
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So assume that the graph E is neither a single vertex nor a single
loop. This means that either E has at least two distinct vertices or E
has a single vertex u at which two or more loops are based. In the
latter case we are done since E will be the Rose graph Rm and
L = LK (Rm) will be purely infinite simple. So assume that |E 0| ≥ 2.
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Now, by Proposition 3, to each vertex v in E there is an integer
k > 0 such that av = k1E in ME . . Suppose w is a sink in E . In ME ,
aw 6= 1E and, as w does not emit any edges, aw 6= naw for every
positive integer n > 1. This is a contradiction, since, by supposition,
there is a positive integer k such that k1E = aw which would imply
that kaw = aw . Likewise, suppose, there is a cycle c = e1 · · · en
without exits, where n > 1 and s(ei ) = vi . Since each vi emits
exactly one edge, we have in ME , the relation av1 = av2 = · · · = avn .
Since this is the only relation involving av1 , av1 6= kv1 for any integer
k > 1. Again this contradicts our supposition that av1 = k1E (where
k > 1, as av1 6= 1E ) which implies that av1 = kav1 for some k > 1.
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Step 3: Thus the finite graph E contains no sinks, and no cycles
without exits. By Lemma 9, E has no non-empty proper hereditary
saturated subsets of vertices. Further, by Lemma 10, every vertex in
E will connect to some extreme cycle in E . Thus cycles in E have
exits and we conclude that L is a simple ring. Let c be an extreme
cycle in E . As L = LK (E ) is graded-simple (Lemma 9), L =< c0 >.
By Theorem 3.7.6 in [AAS], L is purely infinite simple .

Step 4: Consider the additive map φ : N −→ ME such that

1 7−→ 1E . Since, for every v ∈ E 0, av = k1E , φ is an epimorphism.
Also observe that 1E = n1E for some integer n > 1. To see this, let
E 0 = {v1, · · ·, vm} (where m > 1) so that 1E = av1 + · · ·+ avm .
Since for i , avi = ki1E , substituting for the avi , we get 1E = n1E for
some integer n > 1. Since ME

∼= V(L(E )), φ gives rise to an
epimorphism φ̄ : Z −→ K0(L(E )) under which 1 7−→ [LK (E )].
Consequently, K0(L(E )) = φ̄(Z) ∼= Z/nZ for some positive integer
n. It is known [1] that there is an isomorphism
K0(L(1, n+ 1)) −→ Z/nZ mapping [L(1, n+ 1)] 7−→ 1. Thus
(K0(L), [L]) ∼= (Z/nZ, 1) ∼= (K0(L(1, n+ 1)), [L(1, n+ 1)]).
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Statement-1: The algebraic Kirchberg-Phillips problem: Let
E ,F be finite graphs such that LK (E ), LK (F ) are purely infinite
simple. Then LK (E ) ∼= LK (F ) if and only if there is an isomorphism
φ : K0(LK (E )) −→ K0(LK (F )) such that φ([LK (E )]) = [LK (F )].

Statement-2: If E is a finite graph, then finitely generated projective
modules over LK (E ) are free < = > LK (E ) ∼= Ln := L(1, n).
Statement-3: The Cuntz Splice Problem: L2 ∼= L2−, the Leavitt
path algebra of the Cuntz Splice graph of the Rose graph R2.

That Statement-1 => Statement-2 is immediate from the last part
of Theorem 11 (3).

To prove Statement-2 => Statement-3: Now L2− ∼= LK (F ) where F
is the Cuntz splice graph u·		 � v · 	 � w · 	 . By a direct
computation, one can show that the monoid MF consists of exactly
two elements, which then necessarily must be {0} and [1LK (F )]. So
then clearly finitely generated projective modules over L2− are free.
Then, by Statement-2, L2− ∼= Lm for some m. We claim that m = 2.
Because, for m > 2, K0(Lm) ∼= Z/(m− 1)Z while
K0(L2−) = 0 = K0(L2). Thus L2− ∼= L2.
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Remark: The graded version of the Serre’s conjecture property has a
negative answer: If E is a finite graph and if finitely generated graded
projectives over LK (E ) are graded free, then LK (E ) need not be
isomorphic to Ln. Take E to be the graph · 	 � · . A talented
monoid argument (by Roozbeh) shows that LK (E ) � Ln.
A natural question is: Which Leavitt path algebras LK (E ) of a finite graph
E have the graded Serre conjecture property?
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Preliminaries of C*-Algebras

Definition: For each n > 1, the C*-algebra C ∗(Rn) of the rose graph
Rn with n petals is called the Cuntz Algebra and is denoted by On.

The V-monoid of a unital C*-algebra A: Let M∞(A) be the
(directed) union of the ascending chain of matrix rings Mn(A) where

the embedding of Mn(A) into Mn+1(A) is given by x 7−→
(

x 0
0 0

)
.

Two idempotents e, f in M∞(A) are equivalent if there is an
idempotent u in M∞(A) such that e = uu∗ and f = u∗u. Then V(A)
is the V-monoid of A consisting of the equivalence classes of

idempotents [e]0 admitting the operation [e]0 + [f ]0 =

[
e 0
0 f

]
0

.

The Grothendiek group K0(A) is the universal group of V(A).
An important result is the following.

Theorem 12: ([2], Theorem 7.1) Let E be a finite graph. The
natural inclusion LC(E ) −→ C ∗(E ) induces an isomorphism
V(LC(E )) −→ V(C ∗(E )).
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Serre’s Conjecture Property for C*-Algebras

How to interpret the Serre’s conjecture for graph C*-algebras where
the concepts of projective and free modules are not formally
considered in the definition of V-monoid? Motivated by Proposition
3, we take the monoidal approach to address this question.

Definition: Let E be a finite graph. We say that the Serre’s
conjecture property holds in C ∗(E ) if for each v ∈ E 0, there is a
positive integer k such that av = k1E in ME .

Theorem 13: Let E be any finite graph which is not just a single
vertex or just a single loop. Then the C*-algebra C ∗(E ) has the
Serre’s conjecture property if and only if, for some n > 0, C ∗(E ) is
isomorphic to the Cuntz algebra On+1.
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Proof: Sufficiency: As On
∼= C ∗(Rn), using Theorem 6 we have,

V(On) ∼= V(C ∗(Rn)) ∼= V(LC(Rn)).

Also using Corollary 2 and Theorem 1, V(LC(Rn)) ∼= MRn

Follow the proof of the sufficiency part of Proposition 3 to conclude
that the Serre’s conjecture property holds in C ∗(Rn) = On.
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Necessity: Suppose the Serre’s conjecture property holds in C ∗(E ).
Since for each v ∈ E 0, there is a positive integer k such that
av = k1E in ME , repeating the proof of Lemma 9, we conclude that
that C ∗(E ) is ”gauge-invariant simple”, that is, it has no non-zero
proper gauge-invariant ideals. Then, repeating the proof of Theorem
11, we conclude that C ∗(E ) is purely infinite simple and that
K0(C ∗(E )) ∼= Z/nZ for some positive integer n. As
K0(On+1) ∼= Z/nZ, we conclude that
(K0(C ∗(E )), [C ∗(E )]0) ∼= (Z/nZ, 1) ∼= (K0(On+1), [On+1]0). Now
E is a finite graph without sinks and K0(C ∗(E )) ∼= K0(On+1). Then,
by Tomforde ([5]), K1(C ∗(E )) ∼= K1(On+1). We then apply the
Kirchberg-Phillips theorem for graph C*-algebras (see Theorem
2.3.28, [5]) to conclude that C ∗(E ) ∼= On+1.
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