Serre Conjecture, Cuntz Algebras and Leavitt Algebras - Preliminary report

Kulumani M. Rangaswamy University of Colorado, Colorado Springs.

Rings and Wings Seminar- October 27, 2021

Kulumani M. Rangaswamy, University of ColoSerre Conjecture, Cuntz Algebras and LeavittRings and Wings Seminar- October 27, 2021

This is a joint work with Roozbeh Hazrat

Kulumani M. Rangaswamy, University of ColeSerre Conjecture, Cuntz Algebras and LeavittRings and Wings Seminar- October 27, 2021

∃ ► < ∃ ►</p>

 In his article "Faisccaux algebraice coherent" (1955), Serre asked whether finitely generated projective modules over the ring A = K[x₁, · · ·, x_n] (commuting indeterminates) are free.

- In his article "Faisccaux algebraice coherent" (1955), Serre asked whether finitely generated projective modules over the ring A = K[x₁, · · ·, x_n] (commuting indeterminates) are free.
- This became known as "**Serre's conjecture**". Serre's conjecture induced intensive research activity in algebraic geometry. There is even a book by Lam devoted entirely to the origins and implications of this conjecture.

- In his article "Faisccaux algebraice coherent" (1955), Serre asked whether finitely generated projective modules over the ring A = K[x₁, · · ·, x_n] (commuting indeterminates) are free.
- This became known as "**Serre's conjecture**". Serre's conjecture induced intensive research activity in algebraic geometry. There is even a book by Lam devoted entirely to the origins and implications of this conjecture.
- Note that projective modules over $K[x_1]$ are always free as $K[x_1]$ is a principal ideal domain.

- In his article "Faisccaux algebraice coherent" (1955), Serre asked whether finitely generated projective modules over the ring A = K[x₁, · · ·, x_n] (commuting indeterminates) are free.
- This became known as "**Serre's conjecture**". Serre's conjecture induced intensive research activity in algebraic geometry. There is even a book by Lam devoted entirely to the origins and implications of this conjecture.
- Note that projective modules over $K[x_1]$ are always free as $K[x_1]$ is a principal ideal domain.
- C.Seshadri (1958): Serre's conjecture holds when $A = K[x_1, x_2]$.

- In his article "Faisccaux algebraice coherent" (1955), Serre asked whether finitely generated projective modules over the ring A = K[x₁, · · ·, x_n] (commuting indeterminates) are free.
- This became known as "**Serre's conjecture**". Serre's conjecture induced intensive research activity in algebraic geometry. There is even a book by Lam devoted entirely to the origins and implications of this conjecture.
- Note that projective modules over $K[x_1]$ are always free as $K[x_1]$ is a principal ideal domain.
- C.Seshadri (1958): Serre's conjecture holds when $A = K[x_1, x_2]$.
- Quillen in USA and, independently, Suslin in Soviet Union (1976): Serre's conjecture holds for any $n \ge 1$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- In his article "Faisccaux algebraice coherent" (1955), Serre asked whether finitely generated projective modules over the ring A = K[x₁, · · ·, x_n] (commuting indeterminates) are free.
- This became known as "**Serre's conjecture**". Serre's conjecture induced intensive research activity in algebraic geometry. There is even a book by Lam devoted entirely to the origins and implications of this conjecture.
- Note that projective modules over $K[x_1]$ are always free as $K[x_1]$ is a principal ideal domain.
- C.Seshadri (1958): Serre's conjecture holds when $A = K[x_1, x_2]$.
- Quillen in USA and, independently, Suslin in Soviet Union (1976): Serre's conjecture holds for any $n \ge 1$.
- Sharma, Ojunguran and Sridharan (1971): Serre's conjecture is false for K[x₁, · · ·, x_n] if K is a division ring and n ≥ 2.

< 同 ト < 三 ト < 三 ト

We wish to explore the following Statement (conjecture?): The Serre's conjecture property distinguishes the Leavitt algebras L_n := L(1, n) among Leavitt path algebras L_K(E) of finite graphs.

- We wish to explore the following Statement (conjecture?): The Serre's conjecture property distinguishes the Leavitt algebras L_n := L(1, n) among Leavitt path algebras L_K(E) of finite graphs.
- In other words, "If E is a finite graph, then finitely generated projective modules over L_K(E) are free <=> L_K(E) ≅ L_n for some n ≥ 0".

- We wish to explore the following Statement (conjecture?): The Serre's conjecture property distinguishes the Leavitt algebras L_n := L(1, n) among Leavitt path algebras L_K(E) of finite graphs.
- In other words, "If E is a finite graph, then finitely generated projective modules over L_K(E) are free <=> L_K(E) ≅ L_n for some n ≥ 0".
- As we shall see, this conjecture sits between (i) the algebraic Kirchberg-Phillips problem [namely: Two purely infinite simple LPAs

of finite graphs $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(F) \Leftrightarrow \mathcal{K}_0(L_{\mathcal{K}}(E)) \stackrel{\phi}{\cong} \mathcal{K}_0(L_{\mathcal{K}}(F))$ such that $\phi([L_{\mathcal{K}}(E)]) = [L_{\mathcal{K}}(F)]$ and

- We wish to explore the following Statement (conjecture?): The Serre's conjecture property distinguishes the Leavitt algebras L_n := L(1, n) among Leavitt path algebras L_K(E) of finite graphs.
- In other words, "If E is a finite graph, then finitely generated projective modules over L_K(E) are free <=> L_K(E) ≅ L_n for some n ≥ 0".
- As we shall see, this conjecture sits between (i) the algebraic Kirchberg-Phillips problem [namely: Two purely infinite simple LPAs

of finite graphs $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(F) \Leftrightarrow \mathcal{K}_0(L_{\mathcal{K}}(E)) \stackrel{\phi}{\cong} \mathcal{K}_0(L_{\mathcal{K}}(F))$ such that $\phi([L_{\mathcal{K}}(E)]) = [L_{\mathcal{K}}(F)]$ and

 (ii) the Cuntz splice problem [namely: L₂ ≃ L_{2−}, the LPA of the Cuntz splice graph of the Rose graph R₂]

- We wish to explore the following Statement (conjecture?): The Serre's conjecture property distinguishes the Leavitt algebras L_n := L(1, n) among Leavitt path algebras L_K(E) of finite graphs.
- In other words, "If E is a finite graph, then finitely generated projective modules over L_K(E) are free <=> L_K(E) ≅ L_n for some n ≥ 0".
- As we shall see, this conjecture sits between (i) the algebraic Kirchberg-Phillips problem [namely: Two purely infinite simple LPAs

of finite graphs $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(F) \Leftrightarrow \mathcal{K}_0(L_{\mathcal{K}}(E)) \stackrel{\varphi}{\cong} \mathcal{K}_0(L_{\mathcal{K}}(F))$ such that $\phi([L_{\mathcal{K}}(E)]) = [L_{\mathcal{K}}(F)]$ and

- (ii) the Cuntz splice problem [namely: L₂ ≃ L_{2−}, the LPA of the Cuntz splice graph of the Rose graph R₂]
- We will also interpret the meaning of the Serre conjecture property among graph C*-algebras and show that this property indeed characterizes Cuntz algebras \mathcal{O}_n among graph C*-algebras of finite graphs.

Kulumani M. Rangaswamy, University of CokSerre Conjecture, Cuntz Algebras and LeavittRings and Wings Seminar- October 27, 2021

 Recall, the Leavitt Algebra L(1, n) over a field K where n ≥ 0 is defined as follows:

- Recall, the Leavitt Algebra L(1, n) over a field K where n ≥ 0 is defined as follows:
- $L(1,0) \cong K;$

- Recall, the Leavitt Algebra L(1, n) over a field K where n ≥ 0 is defined as follows:
- $L(1,0) \cong K;$
- $L(1,1) \cong K[x,x^{-1}]$

- Recall, the Leavitt Algebra L(1, n) over a field K where n ≥ 0 is defined as follows:
- $L(1,0) \cong K;$
- $L(1,1) \cong K[x,x^{-1}]$
- For $n \ge 2$, $L(1, n) = \langle \{x_1, \dots, x_n, y_1, \dots, y_n : \sum_{i=1}^n x_i y_i = 1 \text{ and, for all } 1 \le i, j \le n, y_i x_j = \delta_{ij} 1 \} >$.

- Recall, the Leavitt Algebra L(1, n) over a field K where n ≥ 0 is defined as follows:
- $L(1,0) \cong K;$
- $L(1,1) \cong K[x,x^{-1}]$
- For $n \ge 2$, $L(1, n) = < \{x_1, \dots, x_n, y_1, \dots, y_n : \sum_{i=1}^n x_i y_i = 1 \text{ and, for all }$

$$1 \leq i, j \leq n, y_i x_j = \delta_{ij} 1 \} >.$$

• Known Theorem : For all $n \ge 0$, $L(1, n) \cong L_{\mathcal{K}}(R_n)$ where R_n is the "Rose graph with n petals"

- Recall, the Leavitt Algebra L(1, n) over a field K where $n \ge 0$ is defined as follows:
- $L(1,0) \cong K;$
- $L(1,1) \cong K[x,x^{-1}]$
- For $n \ge 2$, $L(1, n) = < \{x_1, \dots, x_n, y_1, \dots, y_n : \sum_{i=1}^n x_i y_i = 1 \text{ and, for all }$ 1

$$1 \leq i, j \leq n, y_i x_j = \delta_{ij} 1 \} >.$$

- Known Theorem : For all $n \ge 0$, $L(1, n) \cong L_K(R_n)$ where R_n is the "Rose graph with *n* petals"
- A basic reference: P. Ara, M.A. Moreno and E. Pardo, Non-stable K-theory for graph algebras, Algebra representation Theory, vol. 10 (2007), 157 - 178.

 Let R be a ring with 1. The set of isomorphism classes of finitely generated projective left R-modules becomes an abelian monoid under the operation [P] + [Q] = [P ⊕ Q] and is denoted by V(R).

- Let R be a ring with 1. The set of isomorphism classes of finitely generated projective left R-modules becomes an abelian monoid under the operation [P] + [Q] = [P ⊕ Q] and is denoted by V(R).
- Given a finite graph E, let M_E = the abelian monoid

Kulumani M. Rangaswamy, University of ColoSerre Conjecture, Cuntz Algebras and LeavittRings and Wings Seminar- October 27, 2021

 $v \in \mathbf{F}^0$

- Let R be a ring with 1. The set of isomorphism classes of finitely generated projective left R-modules becomes an abelian monoid under the operation [P] + [Q] = [P ⊕ Q] and is denoted by V(R).
- Given a finite graph E, let M_E = the abelian monoid

• $< \{a_v : v \in E^0: a_v = \sum_{e \in s^{-1}(v)} a_{r(e)} \text{ for all regular vertices } v \in E^0\} >$. Let $1_E = \sum a_v$

- Let R be a ring with 1. The set of isomorphism classes of finitely generated projective left R-modules becomes an abelian monoid under the operation [P] + [Q] = [P ⊕ Q] and is denoted by V(R).
- Given a finite graph E, let M_E = the abelian monoid

•
$$< \{a_v : v \in E^0: a_v = \sum_{e \in s^{-1}(v)} a_{r(e)} \text{ for all regular vertices } v \in E^0\} >$$
.
Let $1_E = \sum_{v \in E^0} a_v$

• Theorem 1: [2] Let E be a finite graph and $L := L_K(E)$. Then

- Let R be a ring with 1. The set of isomorphism classes of finitely generated projective left R-modules becomes an abelian monoid under the operation [P] + [Q] = [P ⊕ Q] and is denoted by V(R).
- Given a finite graph E, let M_E = the abelian monoid

•
$$< \{a_v : v \in E^0: a_v = \sum_{e \in s^{-1}(v)} a_{r(e)} \text{ for all regular vertices } v \in E^0\} >$$
.
Let $1_E = \sum_{v \in E^0} a_v$

Theorem 1: [2] Let E be a finite graph and L := L_K(E). Then
(i) M_E ^φ ≃ V(L_K(E)) defined, for all v ∈ E⁰, by φ(a_v) = [Lv]. Moreover, φ(1_E) = [L].

- Let R be a ring with 1. The set of isomorphism classes of finitely generated projective left R-modules becomes an abelian monoid under the operation [P] + [Q] = [P ⊕ Q] and is denoted by V(R).
- Given a finite graph E, let M_E = the abelian monoid

•
$$< \{a_v : v \in E^0: a_v = \sum_{e \in s^{-1}(v)} a_{r(e)}$$
 for all regular vertices $v \in E^0\} >$.
Let $1_E = \sum_{v \in E^0} a_v$

- Theorem 1: [2] Let E be a finite graph and L := L_K(E). Then
 (i) M_E ^φ ≃ V(L_K(E)) defined, for all v ∈ E⁰, by φ(a_v) = [Lv]. Moreover, φ(1_E) = [L].
- (ii) If P is a finitely generated projective left L-module, then in $\mathcal{V}(L)$, $[P] = [Lu_1] + \cdots + [Lu_m]$ for some finite number of vertices u_1, \cdots, u_m in E.

- Let R be a ring with 1. The set of isomorphism classes of finitely generated projective left R-modules becomes an abelian monoid under the operation [P] + [Q] = [P ⊕ Q] and is denoted by V(R).
- Given a finite graph E, let M_E = the abelian monoid

•
$$< \{a_v : v \in E^0: a_v = \sum_{e \in s^{-1}(v)} a_{r(e)} \text{ for all regular vertices } v \in E^0\} >$$
.
Let $1_E = \sum_{v \in E^0} a_v$

- Theorem 1: [2] Let E be a finite graph and L := L_K(E). Then
 (i) M_E ^φ ≃ V(L_K(E)) defined, for all v ∈ E⁰, by φ(a_v) = [Lv]. Moreover, φ(1_E) = [L].
- (ii) If P is a finitely generated projective left L-module, then in $\mathcal{V}(L)$, $[P] = [Lu_1] + \cdots + [Lu_m]$ for some finite number of vertices u_1, \cdots, u_m in E.
- **Corollary 2**: The V-monoid $\mathcal{V}(L_{\mathcal{K}}(E))$ is independent of the field \mathcal{K} .

• **Proposition 3:** Let *E* be a finite graph and and $L = L_K(E)$. Every finitely generated projective left/right L-module is free if and only if for every $u \in E^0$, there is an integer $k \ge 1$ (depending on *u*) such that $a_u = k \mathbf{1}_E$ in M_E .

- **Proposition 3:** Let *E* be a finite graph and and $L = L_K(E)$. Every finitely generated projective left/right L-module is free if and only if for every $u \in E^0$, there is an integer $k \ge 1$ (depending on *u*) such that $a_u = k \mathbf{1}_E$ in M_E .
- **Proof**: Sufficiency: Let *P* be any finitely generated projective left *L*-module.

- Proposition 3: Let E be a finite graph and and L = L_K(E). Every finitely generated projective left/right L-module is free if and only if for every u ∈ E⁰, there is an integer k ≥ 1 (depending on u) such that a_u = k1_E in M_E.
- **Proof**: Sufficiency: Let *P* be any finitely generated projective left *L*-module.
- By Theorem 1, $[P] = [Lu_1] + \cdots + [Lu_n]$ where $u_i \in E^0$ for $i = 1, \dots, n$.

- Proposition 3: Let E be a finite graph and and L = L_K(E). Every finitely generated projective left/right L-module is free if and only if for every u ∈ E⁰, there is an integer k ≥ 1 (depending on u) such that a_u = k1_E in M_E.
- **Proof**: Sufficiency: Let *P* be any finitely generated projective left *L*-module.
- By Theorem 1, $[P] = [Lu_1] + \cdots + [Lu_n]$ where $u_i \in E^0$ for $i = 1, \cdots, n$.
- By hypothesis, to each $u_i \in E^0$ there is an integer $k_i \ge 1$ such that $a_{u_i} = k_i 1_E$ in M_E

- Proposition 3: Let E be a finite graph and and L = L_K(E). Every finitely generated projective left/right L-module is free if and only if for every u ∈ E⁰, there is an integer k ≥ 1 (depending on u) such that a_u = k1_E in M_E.
- **Proof**: Sufficiency: Let *P* be any finitely generated projective left *L*-module.
- By Theorem 1, $[P] = [Lu_1] + \cdots + [Lu_n]$ where $u_i \in E^0$ for $i = 1, \cdots, n$.
- By hypothesis, to each $u_i \in E^0$ there is an integer $k_i \ge 1$ such that $a_{u_i} = k_i 1_E$ in M_E
- = > In $\mathcal{V}(L)$, $[Lu_i] = k_i[L]$, by the iso $M_E \stackrel{\varphi}{\cong} \mathcal{V}(L_{\mathcal{K}}(E))$ in Theorem 1

- Proposition 3: Let E be a finite graph and and L = L_K(E). Every finitely generated projective left/right L-module is free if and only if for every u ∈ E⁰, there is an integer k ≥ 1 (depending on u) such that a_u = k1_E in M_E.
- **Proof**: Sufficiency: Let *P* be any finitely generated projective left *L*-module.
- By Theorem 1, $[P] = [Lu_1] + \cdots + [Lu_n]$ where $u_i \in E^0$ for $i = 1, \dots, n$.
- By hypothesis, to each $u_i \in E^0$ there is an integer $k_i \ge 1$ such that $a_{u_i} = k_i 1_E$ in M_E
- = > In $\mathcal{V}(L)$, $[Lu_i] = k_i[L]$, by the iso $M_E \stackrel{\varphi}{\cong} \mathcal{V}(L_K(E))$ in Theorem 1
- ullet = > [P] = m[L] for integer m \ge 1 in $\mathcal{V}(L)$

- Proposition 3: Let E be a finite graph and and L = L_K(E). Every finitely generated projective left/right L-module is free if and only if for every u ∈ E⁰, there is an integer k ≥ 1 (depending on u) such that a_u = k1_E in M_E.
- **Proof**: Sufficiency: Let *P* be any finitely generated projective left *L*-module.
- By Theorem 1, $[P] = [Lu_1] + \cdots + [Lu_n]$ where $u_i \in E^0$ for $i = 1, \dots, n$.
- By hypothesis, to each $u_i \in E^0$ there is an integer $k_i \ge 1$ such that $a_{u_i} = k_i 1_E$ in M_E
- = > In $\mathcal{V}(L)$, $[Lu_i] = k_i[L]$, by the iso $M_E \stackrel{\varphi}{\cong} \mathcal{V}(L_K(E))$ in Theorem 1

• = > [
$$P$$
] = $m[L]$ for integer $m \ge 1$ in $\mathcal{V}(L)$
• = > [P] = [L] + · · · + [L], so P is free.

- Proposition 3: Let E be a finite graph and and L = L_K(E). Every finitely generated projective left/right L-module is free if and only if for every u ∈ E⁰, there is an integer k ≥ 1 (depending on u) such that a_u = k1_E in M_E.
- **Proof**: Sufficiency: Let *P* be any finitely generated projective left *L*-module.
- By Theorem 1, $[P] = [Lu_1] + \cdots + [Lu_n]$ where $u_i \in E^0$ for $i = 1, \dots, n$.
- By hypothesis, to each $u_i \in E^0$ there is an integer $k_i \ge 1$ such that $a_{u_i} = k_i 1_E$ in M_E
- = > In $\mathcal{V}(L)$, $[Lu_i] = k_i[L]$, by the iso $M_E \stackrel{\varphi}{\cong} \mathcal{V}(L_K(E))$ in Theorem 1
- $\bullet \ = \ > \ [P] = m[L] \ \text{for integer} \ m \ge 1 \ \text{in} \ \mathcal{V}(L)$
- = > $[P] = [L] + \cdots + [L]$, so P is free.
- Necessity: Let $u \in E^0$. As Lu is free, $[Lu] = [L] + \cdots + [L]$. Then, in M_E , Theorem 1 implies $a_u = k1_E$ for some integer k.

• **Theorem 4**: Every finitely generated projective left/right module over $L_n := L(1, n)$ is free.

Kulumani M. Rangaswamy, University of CokSerre Conjecture, Cuntz Algebras and LeavittRings and Wings Seminar- October 27, 2021

э

- Theorem 4: Every finitely generated projective left/right module over L_n := L(1, n) is free.
- Proof: The result holds when n = 0 or 1, since L₀ ≅ K and L₁ ≅ K[x, x⁻¹], a P.I.D.. So assume n ≥ 2. Now L_n ≅ L_K(R_n), where R_n is the rose graph with n loops based at a vertex v. Consider the monoid M_{R_n}. In the isomorphism φ: M_{R_n} → V(L_K(R_n)) = V(L_n), φ(1_{R_n}) = [L_n] and φ(a_v) = [L_nv]. Since R_n has only one vertex v, a_v = 1_{R_n} and so [L_nv] = [L_n]. If P is any finitely generated projective L_n-module, then Theorem 1(ii) implies that [P] = k[L_nv] = k[L_n], where k > 0. Hence P = L_n ⊕ ··· ⊕ L_n is free.
- Theorem 4: Every finitely generated projective left/right module over L_n := L(1, n) is free.
- Proof: The result holds when n = 0 or 1, since L₀ ≅ K and L₁ ≅ K[x, x⁻¹], a P.I.D.. So assume n ≥ 2. Now L_n ≅ L_K(R_n), where R_n is the rose graph with n loops based at a vertex v. Consider the monoid M_{R_n}. In the isomorphism φ: M_{R_n} → V(L_K(R_n)) = V(L_n), φ(1_{R_n}) = [L_n] and φ(a_v) = [L_nv]. Since R_n has only one vertex v, a_v = 1_{R_n} and so [L_nv] = [L_n]. If P is any finitely generated projective L_n-module, then Theorem 1(ii) implies that [P] = k[L_nv] = k[L_n], where k > 0. Hence P = L_n ⊕ ··· ⊕ L_n is free.
- Corollary 5: If a unital ring R is Morita equivalent to L_n , then $R \cong M_d(L_n)$ for some integer d > 0.

・ 何 ト ・ ヨ ト ・ ヨ ト ・

- Theorem 4: Every finitely generated projective left/right module over L_n := L(1, n) is free.
- Proof: The result holds when n = 0 or 1, since L₀ ≅ K and L₁ ≅ K[x, x⁻¹], a P.I.D.. So assume n ≥ 2. Now L_n ≅ L_K(R_n), where R_n is the rose graph with n loops based at a vertex v. Consider the monoid M_{R_n}. In the isomorphism φ: M_{R_n} → V(L_K(R_n)) = V(L_n), φ(1_{R_n}) = [L_n] and φ(a_v) = [L_nv]. Since R_n has only one vertex v, a_v = 1_{R_n} and so [L_nv] = [L_n]. If P is any finitely generated projective L_n-module, then Theorem 1(ii) implies that [P] = k[L_nv] = k[L_n], where k > 0. Hence P = L_n ⊕ ··· ⊕ L_n is free.
- Corollary 5: If a unital ring R is Morita equivalent to L_n , then $R \cong M_d(L_n)$ for some integer d > 0.
- **Proof**: As f.g. projectives over L_n are free, $R \cong M_d(L_n)$ by Corollary 18.36 in [3], where d > 0.

(人間) とうきょうきょう

Definition: Let *M* be an additive monoid. An order ideal *I* in *M* is a submonoid with the property that, for each *a*, *b* ∈ *M*, *a* + *b* ∈ *I* implies *a* ∈ *I* and *b* ∈ *I*.

Kulumani M. Rangaswamy, University of CokSerre Conjecture, Cuntz Algebras and LeavittRings and Wings Seminar- October 27, 2021

- Definition: Let *M* be an additive monoid. An order ideal *I* in *M* is a submonoid with the property that, for each *a*, *b* ∈ *M*, *a* + *b* ∈ *I* implies *a* ∈ *I* and *b* ∈ *I*.
- Proposition 8: ([2], Theorem 5.3) Let E be a row-finite graph. There is an order-preserving bijection between the poset of order ideals of M_E and the poset of hereditary saturated subsets of vertices in E [equivalently, the poset of graded ((gauge-invariant) ideals of L_K(E) (C*(E))]

- Definition: Let *M* be an additive monoid. An order ideal *I* in *M* is a submonoid with the property that, for each *a*, *b* ∈ *M*, *a* + *b* ∈ *I* implies *a* ∈ *I* and *b* ∈ *I*.
- Proposition 8: ([2], Theorem 5.3) Let E be a row-finite graph. There is an order-preserving bijection between the poset of order ideals of M_E and the poset of hereditary saturated subsets of vertices in E [equivalently, the poset of graded ((gauge-invariant) ideals of L_K(E) (C^{*}(E))]
- Lemma 9: Let *E* be a finite graph. If every finitely generated projective module over $L_K(E)$ is free, then $L_K(E)$ is graded-simple, that is, $L_K(E)$ has no non-zero proper two-sided graded ideals.

- Definition: Let *M* be an additive monoid. An order ideal *I* in *M* is a submonoid with the property that, for each *a*, *b* ∈ *M*, *a* + *b* ∈ *I* implies *a* ∈ *I* and *b* ∈ *I*.
- Proposition 8: ([2], Theorem 5.3) Let E be a row-finite graph. There is an order-preserving bijection between the poset of order ideals of M_E and the poset of hereditary saturated subsets of vertices in E [equivalently, the poset of graded ((gauge-invariant) ideals of L_K(E) (C*(E))]
- Lemma 9: Let *E* be a finite graph. If every finitely generated projective module over $L_{K}(E)$ is free, then $L_{K}(E)$ is graded-simple, that is, $L_{K}(E)$ has no non-zero proper two-sided graded ideals.
- **Proof**: Let *I* be a non-zero order ideal of the monoid M_E . Let $a_u \in I$ for some $u \in E^0$. By Proposition 3, $a_u = k1_E$ for some $k \ge 1$. As *I* is an order ideal, $k1_E = a_u \in I$ implies that $1_E \in I$. Consequently, $I = M_E$. Since, by Proposition 8, the order ideals of M_E are in bijective correspondence with the graded ideals of $L_K(E)$, we conclude that $L_K(E)$ has no non-zero proper graded two-sided ideals.

Kulumani M. Rangaswamy, University of CokSerre Conjecture, Cuntz Algebras and LeavittRings and Wings Seminar- October 27, 2021

• To get additional information about those $L_{\mathcal{K}}(E)$ over which finitely generated projectives are free, we consider the following.

Kulumani M. Rangaswamy, University of ColeSerre Conjecture, Cuntz Algebras and LeavittRings and Wings Seminar- October 27, 2021

► < Ξ ►</p>

- To get additional information about those $L_{\mathcal{K}}(E)$ over which finitely generated projectives are free, we consider the following.
- **Definition**: A cycle *c* is said to an **extreme cycle**, if *c* has exits and for every exit *e*, there is a path connecting *r*(*e*) to some vertex *w* on the cycle *c*. Intuitively, every path that leaves *c* can be elongated so that the longer path returns to *c*.

- To get additional information about those $L_{\mathcal{K}}(E)$ over which finitely generated projectives are free, we consider the following.
- **Definition**: A cycle *c* is said to an **extreme cycle**, if *c* has exits and for every exit *e*, there is a path connecting *r*(*e*) to some vertex *w* on the cycle *c*. Intuitively, every path that leaves *c* can be elongated so that the longer path returns to *c*.
- Lemma 10: (Lemma 3.7.10, [AAS]) In a finite graph E, every vertex connects to a sink or a cycle without exits or an extreme cycle in E.

- To get additional information about those $L_{\mathcal{K}}(E)$ over which finitely generated projectives are free, we consider the following.
- **Definition**: A cycle *c* is said to an **extreme cycle**, if *c* has exits and for every exit *e*, there is a path connecting *r*(*e*) to some vertex *w* on the cycle *c*. Intuitively, every path that leaves *c* can be elongated so that the longer path returns to *c*.
- Lemma 10: (Lemma 3.7.10, [AAS]) In a finite graph E, every vertex connects to a sink or a cycle without exits or an extreme cycle in E.
- Recall, a ring *R* is called **purely infinite simple**, if it is simple and every non-zero one-sided ideal contains an idempotent *e* such that *Re* is isomorphic to a proper direct summand of itself.

- To get additional information about those $L_{\mathcal{K}}(E)$ over which finitely generated projectives are free, we consider the following.
- **Definition**: A cycle *c* is said to an **extreme cycle**, if *c* has exits and for every exit *e*, there is a path connecting *r*(*e*) to some vertex *w* on the cycle *c*. Intuitively, every path that leaves *c* can be elongated so that the longer path returns to *c*.
- Lemma 10: (Lemma 3.7.10, [AAS]) In a finite graph E, every vertex connects to a sink or a cycle without exits or an extreme cycle in E.
- Recall, a ring *R* is called **purely infinite simple**, if it is simple and every non-zero one-sided ideal contains an idempotent *e* such that *Re* is isomorphic to a proper direct summand of itself.
- Leavitt proved that the Leavitt ring L(1, n) is purely infinite simple.

Theorem 11: Let *E* be a finite graph. Let $L := L_K(E)$. If every finitely generated projective left/right *L*-module is free, then *L* is one of the following:

- 1. $L \cong K$;
- 2. $L \cong K[x, x^{-1}];$

3. L is **purely infinite simple** with $L = \langle c^0 \rangle$ where c is an extreme cycle (and thus E contains cycles with exits, E^0 is downward directed, contains no non-empty proper hereditary saturated subsets and every $u \in E^0$ connects to a $w \in c^0$). Further, for some positive integer n, $K_0(L) \cong K_0(L(1, n + 1))$. Moreover,

 $(\mathcal{K}_0(L), [L]) \cong (\mathbb{Z}/n\mathbb{Z}, 1) \cong (\mathcal{K}_0(L(1, n+1)), [L(1, n+1)])$

Proof: Step 1: If E is just a single vertex {w}, then clearly L ≅ K. Likewise, if E is just a single loop, then L ≅ K[x, x⁻¹].

Kulumani M. Rangaswamy, University of ColeSerre Conjecture, Cuntz Algebras and LeavittRings and Wings Seminar- October 27, 2021

- Proof: Step 1: If E is just a single vertex {w}, then clearly L ≅ K. Likewise, if E is just a single loop, then L ≅ K[x, x⁻¹].
- Step 2: Show that *E* contains no sinks and no cycles without exits: (Basic idea: Existence of a sink or a no exit cycle contradicts the hypothesis that, to each vertex u, $a_u = k1_E$ for some k > 0.)

- Proof: Step 1: If E is just a single vertex {w}, then clearly L ≅ K. Likewise, if E is just a single loop, then L ≅ K[x, x⁻¹].
- Step 2: Show that *E* contains no sinks and no cycles without exits: (Basic idea: Existence of a sink or a no exit cycle contradicts the hypothesis that, to each vertex u, $a_u = k1_E$ for some k > 0.)
- So assume that the graph E is neither a single vertex nor a single loop. This means that either E has at least two distinct vertices or Ehas a single vertex u at which two or more loops are based. In the latter case we are done since E will be the Rose graph R_m and $L = L_K(R_m)$ will be purely infinite simple. So assume that $|E^0| \ge 2$.

• Now, by Proposition 3, to each vertex v in E there is an integer k > 0 such that $a_v = k 1_F$ in M_F . Suppose w is a sink in E. In M_F . $a_w \neq 1_E$ and, as w does not emit any edges, $a_w \neq na_w$ for every positive integer n > 1. This is a contradiction, since, by supposition, there is a positive integer k such that $k1_F = a_w$ which would imply that $ka_w = a_w$. Likewise, suppose, there is a cycle $c = e_1 \cdots e_n$ without exits, where n > 1 and $s(e_i) = v_i$. Since each v_i emits exactly one edge, we have in M_E , the relation $a_{v_1} = a_{v_2} = \cdots = a_{v_n}$. Since this is the only relation involving a_{v_1} , $a_{v_1} \neq kv_1$ for any integer k > 1. Again this contradicts our supposition that $a_{v_1} = k 1_E$ (where k > 1, as $a_{v_1} \neq 1_E$) which implies that $a_{v_1} = ka_{v_1}$ for some k > 1.

Kulumani M. Rangaswamy, University of ColcSerre Conjecture, Cuntz Algebras and LeavittRings and Wings Seminar- October 27, 2021

• Step 3: Thus the finite graph *E* contains no sinks, and no cycles without exits. By Lemma 9, *E* has no non-empty proper hereditary saturated subsets of vertices. Further, by Lemma 10, every vertex in *E* will connect to some extreme cycle in *E*. Thus cycles in *E* have exits and we conclude that *L* is a simple ring. Let *c* be an extreme cycle in *E*. As $L = L_K(E)$ is graded-simple (Lemma 9), $L = < c^0 >$. By Theorem 3.7.6 in **[AAS]**, *L* is purely infinite simple .

• Step 3: Thus the finite graph *E* contains no sinks, and no cycles without exits. By Lemma 9, *E* has no non-empty proper hereditary saturated subsets of vertices. Further, by Lemma 10, every vertex in *E* will connect to some extreme cycle in *E*. Thus cycles in *E* have exits and we conclude that *L* is a simple ring. Let *c* be an extreme cycle in *E*. As $L = L_K(E)$ is graded-simple (Lemma 9), $L = < c^0 >$. By Theorem 3.7.6 in **[AAS]**, *L* is purely infinite simple .

• **Step 4**: Consider the additive map $\phi : \mathbb{N} \longrightarrow M_E$ such that

 $1 \mapsto 1_F$. Since, for every $v \in E^0$, $a_v = k 1_F$, ϕ is an epimorphism. Also observe that $1_F = n1_F$ for some integer n > 1. To see this, let $E^{0} = \{v_{1}, \dots, v_{m}\}$ (where m > 1) so that $1_{E} = a_{v_{1}} + \dots + a_{v_{m}}$. Since for *i*, $a_{v_i} = k_i 1_E$, substituting for the a_{v_i} , we get $1_E = n 1_E$ for some integer n > 1. Since $M_E \cong \mathcal{V}(L(E))$, ϕ gives rise to an epimorphism $\bar{\phi} : \mathbb{Z} \longrightarrow K_0(L(E))$ under which $1 \longmapsto [L_{\kappa}(E)]$. Consequently, $K_0(L(E)) = \overline{\phi}(\mathbb{Z}) \cong \mathbb{Z}/n\mathbb{Z}$ for some positive integer n. It is known [1] that there is an isomorphism $K_0(L(1, n+1)) \longrightarrow \mathbb{Z}/n\mathbb{Z}$ mapping $[L(1, n+1)] \longmapsto 1$. Thus $(K_0(L), [L]) \cong (\mathbb{Z}/n\mathbb{Z}, 1) \cong (K_0(L(1, n+1)), [L(1, n+1)]).$

Kulumani M. Rangaswamy, University of ColeSerre Conjecture, Cuntz Algebras and LeavittRings and Wings Seminar- October 27, 2021

• Statement-1: The algebraic Kirchberg-Phillips problem: Let E, F be finite graphs such that $L_{\mathcal{K}}(E), L_{\mathcal{K}}(F)$ are purely infinite simple. Then $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(F)$ if and only if there is an isomorphism $\phi: \mathcal{K}_0(L_{\mathcal{K}}(E)) \longrightarrow \mathcal{K}_0(L_{\mathcal{K}}(F))$ such that $\phi([L_{\mathcal{K}}(E)]) = [L_{\mathcal{K}}(F)]$.

Kulumani M. Rangaswamy, University of ColeSerre Conjecture, Cuntz Algebras and LeavittRings and Wings Seminar- October 27, 2021

- Statement-1: The algebraic Kirchberg-Phillips problem: Let E, F be finite graphs such that $L_{\mathcal{K}}(E), L_{\mathcal{K}}(F)$ are purely infinite simple. Then $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(F)$ if and only if there is an isomorphism $\phi: \mathcal{K}_0(L_{\mathcal{K}}(E)) \longrightarrow \mathcal{K}_0(L_{\mathcal{K}}(F))$ such that $\phi([L_{\mathcal{K}}(E)]) = [L_{\mathcal{K}}(F)]$.
- Statement-2: If E is a finite graph, then finitely generated projective modules over L_K(E) are free < = > L_K(E) ≅ L_n := L(1, n).

- Statement-1: The algebraic Kirchberg-Phillips problem: Let E, F be finite graphs such that $L_{\mathcal{K}}(E), L_{\mathcal{K}}(F)$ are purely infinite simple. Then $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(F)$ if and only if there is an isomorphism $\phi: \mathcal{K}_0(L_{\mathcal{K}}(E)) \longrightarrow \mathcal{K}_0(L_{\mathcal{K}}(F))$ such that $\phi([L_{\mathcal{K}}(E)]) = [L_{\mathcal{K}}(F)]$.
- Statement-2: If E is a finite graph, then finitely generated projective modules over L_K(E) are free < = > L_K(E) ≅ L_n := L(1, n).
- Statement-3: The Cuntz Splice Problem: $L_2 \cong L_{2-}$, the Leavitt path algebra of the Cuntz Splice graph of the Rose graph R_2 .

- Statement-1: The algebraic Kirchberg-Phillips problem: Let E, F be finite graphs such that $L_{\mathcal{K}}(E), L_{\mathcal{K}}(F)$ are purely infinite simple. Then $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(F)$ if and only if there is an isomorphism $\phi: \mathcal{K}_0(L_{\mathcal{K}}(E)) \longrightarrow \mathcal{K}_0(L_{\mathcal{K}}(F))$ such that $\phi([L_{\mathcal{K}}(E)]) = [L_{\mathcal{K}}(F)]$.
- Statement-2: If E is a finite graph, then finitely generated projective modules over L_K(E) are free < = > L_K(E) ≅ L_n := L(1, n).
- Statement-3: The Cuntz Splice Problem: $L_2 \cong L_{2-}$, the Leavitt path algebra of the Cuntz Splice graph of the Rose graph R_2 .
- That Statement-1 => Statement-2 is immediate from the last part of Theorem 11 (3).

- Statement-1: The algebraic Kirchberg-Phillips problem: Let E, F be finite graphs such that $L_{\mathcal{K}}(E), L_{\mathcal{K}}(F)$ are purely infinite simple. Then $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(F)$ if and only if there is an isomorphism $\phi: \mathcal{K}_0(L_{\mathcal{K}}(E)) \longrightarrow \mathcal{K}_0(L_{\mathcal{K}}(F))$ such that $\phi([L_{\mathcal{K}}(E)]) = [L_{\mathcal{K}}(F)]$.
- Statement-2: If E is a finite graph, then finitely generated projective modules over L_K(E) are free < = > L_K(E) ≅ L_n := L(1, n).
- Statement-3: The Cuntz Splice Problem: $L_2 \cong L_{2-}$, the Leavitt path algebra of the Cuntz Splice graph of the Rose graph R_2 .
- That Statement-1 => Statement-2 is immediate from the last part of Theorem 11 (3).
- To prove Statement-2 => Statement-3: Now $L_{2-} \cong L_K(F)$ where F is the Cuntz splice graph $u \cdot \overset{\odot}{\odot} \rightleftharpoons v \cdot \overset{\odot}{\odot} \rightleftharpoons w \cdot \overset{\odot}{\odot}$. By a direct computation, one can show that the monoid M_F consists of exactly two elements, which then necessarily must be $\{0\}$ and $[1_{L_K(F)}]$. So then clearly finitely generated projective modules over L_{2-} are free. Then, by Statement-2, $L_{2-} \cong L_m$ for some m. We claim that m = 2. Because, for m > 2, $K_0(L_m) \cong \mathbb{Z}/(m-1)\mathbb{Z}$ while $K_0(L_{2-}) = 0 = K_0(L_2)$. Thus $L_{2-} \cong L_2$.

Remark: The graded version of the Serre's conjecture property has a negative answer: If E is a finite graph and if finitely generated graded projectives over $L_K(E)$ are graded free, then $L_K(E)$ need not be isomorphic to L_n . Take E to be the graph $\cdot \circlearrowleft \rightleftharpoons \cdot \cdot$. A talented monoid argument (by Roozbeh) shows that $L_K(E) \ncong L_n$. A natural question is: Which Leavitt path algebras $L_K(E)$ of a finite graph E have the graded Serre conjecture property?

• **Definition**: For each n > 1, the C*-algebra $C^*(R_n)$ of the rose graph R_n with n petals is called the **Cuntz Algebra** and is denoted by \mathcal{O}_n .

- **Definition**: For each n > 1, the C*-algebra $C^*(R_n)$ of the rose graph R_n with n petals is called the **Cuntz Algebra** and is denoted by \mathcal{O}_n .
- The V-monoid of a unital C*-algebra A: Let $M_{\infty}(A)$ be the (directed) union of the ascending chain of matrix rings $M_n(A)$ where the embedding of $M_n(A)$ into $M_{n+1}(A)$ is given by $x \mapsto \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix}$.

Two idempotents e, f in $M_{\infty}(A)$ are equivalent if there is an idempotent u in $M_{\infty}(A)$ such that $e = uu^*$ and $f = u^*u$. Then $\mathcal{V}(A)$ is the **V-monoid of** A consisting of the equivalence classes of idempotents $[e]_0$ admitting the operation $[e]_0 + [f]_0 = \begin{bmatrix} e & 0 \\ 0 & f \end{bmatrix}_0^{-1}$. The Grothendiek group $K_0(A)$ is the universal group of $\mathcal{V}(A)$.

- **Definition**: For each n > 1, the C*-algebra $C^*(R_n)$ of the rose graph R_n with n petals is called the **Cuntz Algebra** and is denoted by \mathcal{O}_n .
- The V-monoid of a unital C*-algebra A: Let $M_{\infty}(A)$ be the (directed) union of the ascending chain of matrix rings $M_n(A)$ where the embedding of $M_n(A)$ into $M_{n+1}(A)$ is given by $x \mapsto \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix}$.

Two idempotents e, f in $M_{\infty}(A)$ are equivalent if there is an idempotent u in $M_{\infty}(A)$ such that $e = uu^*$ and $f = u^*u$. Then $\mathcal{V}(A)$ is the **V-monoid of** A consisting of the equivalence classes of idempotents $[e]_0$ admitting the operation $[e]_0 + [f]_0 = \begin{bmatrix} e & 0 \\ 0 & f \end{bmatrix}_0^{-1}$. The Grothendiek group $K_0(A)$ is the universal group of $\mathcal{V}(A)$. • An important result is the following.

- **Definition**: For each n > 1, the C*-algebra $C^*(R_n)$ of the rose graph R_n with n petals is called the **Cuntz Algebra** and is denoted by \mathcal{O}_n .
- The V-monoid of a unital C*-algebra A: Let $M_{\infty}(A)$ be the (directed) union of the ascending chain of matrix rings $M_n(A)$ where the embedding of $M_n(A)$ into $M_{n+1}(A)$ is given by $x \mapsto \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix}$.

Two idempotents e, f in $M_{\infty}(A)$ are equivalent if there is an idempotent u in $M_{\infty}(A)$ such that $e = uu^*$ and $f = u^*u$. Then $\mathcal{V}(A)$ is the **V-monoid of** A consisting of the equivalence classes of idempotents $[e]_0$ admitting the operation $[e]_0 + [f]_0 = \begin{bmatrix} e & 0 \\ 0 & f \end{bmatrix}_0^{-1}$.

The Grothendiek group $K_0(A)$ is the universal group of $\overline{\mathcal{V}}(A)$.

- An important result is the following.
- Theorem 12: ([2], Theorem 7.1) Let E be a finite graph. The natural inclusion L_C(E) → C^{*}(E) induces an isomorphism V(L_C(E)) → V(C^{*}(E)).

Kulumani M. Rangaswamy, University of CokSerre Conjecture, Cuntz Algebras and LeavittRings and Wings Seminar- October 27, 2021

Serre's Conjecture Property for C*-Algebras

• How to interpret the Serre's conjecture for graph C*-algebras where the concepts of projective and free modules are not formally considered in the definition of V-monoid? Motivated by Proposition 3, we take the monoidal approach to address this question.

Serre's Conjecture Property for C*-Algebras

- How to interpret the Serre's conjecture for graph C*-algebras where the concepts of projective and free modules are not formally considered in the definition of V-monoid? Motivated by Proposition 3, we take the monoidal approach to address this question.
- Definition: Let *E* be a finite graph. We say that the Serre's conjecture property holds in C*(*E*) if for each v ∈ E⁰, there is a positive integer k such that a_v = k1_E in M_E.

Serre's Conjecture Property for C*-Algebras

- How to interpret the Serre's conjecture for graph C*-algebras where the concepts of projective and free modules are not formally considered in the definition of V-monoid? Motivated by Proposition 3, we take the monoidal approach to address this question.
- Definition: Let *E* be a finite graph. We say that the Serre's conjecture property holds in C^{*}(E) if for each v ∈ E⁰, there is a positive integer k such that a_v = k1_E in M_E.
- Theorem 13: Let E be any finite graph which is not just a single vertex or just a single loop. Then the C*-algebra $C^*(E)$ has the Serre's conjecture property if and only if, for some n > 0, $C^*(E)$ is isomorphic to the Cuntz algebra \mathcal{O}_{n+1} .

• **Proof**: Sufficiency: As $\mathcal{O}_n \cong C^*(R_n)$, using Theorem 6 we have,

Kulumani M. Rangaswamy, University of ColeSerre Conjecture, Cuntz Algebras and LeavittRings and Wings Seminar- October 27, 2021

.∋...>

Proof: Sufficiency: As O_n ≅ C*(R_n), using Theorem 6 we have,
V(O_n) ≅ V(C*(R_n)) ≅ V(L_C(R_n)).

4 E b

- **Proof**: Sufficiency: As $\mathcal{O}_n \cong C^*(R_n)$, using Theorem 6 we have,
- $\mathcal{V}(\mathcal{O}_n) \cong \mathcal{V}(C^*(R_n)) \cong \mathcal{V}(L_{\mathbb{C}}(R_n)).$
- Also using Corollary 2 and Theorem 1, $\mathcal{V}(L_{\mathbb{C}}(R_n)) \cong M_{R_n}$

• **Proof**: Sufficiency: As $\mathcal{O}_n \cong C^*(R_n)$, using Theorem 6 we have,

•
$$\mathcal{V}(\mathcal{O}_n) \cong \mathcal{V}(C^*(R_n)) \cong \mathcal{V}(L_{\mathbb{C}}(R_n)).$$

- Also using Corollary 2 and Theorem 1, $\mathcal{V}(L_{\mathbb{C}}(R_n)) \cong M_{R_n}$
- Follow the proof of the sufficiency part of Proposition 3 to conclude that the Serre's conjecture property holds in C*(R_n) = O_n.

• Necessity: Suppose the Serre's conjecture property holds in $C^*(E)$. Since for each $v \in E^0$, there is a positive integer k such that $a_V = k 1_F$ in M_F , repeating the proof of Lemma 9, we conclude that that $C^*(E)$ is "gauge-invariant simple", that is, it has no non-zero proper gauge-invariant ideals. Then, repeating the proof of Theorem 11, we conclude that $C^*(E)$ is purely infinite simple and that $K_0(C^*(E)) \cong \mathbb{Z}/n\mathbb{Z}$ for some positive integer n. As $K_0(\mathcal{O}_{n+1}) \cong \mathbb{Z}/n\mathbb{Z}$, we conclude that $(K_0(C^*(E)), [C^*(E)]_0) \cong (\mathbb{Z}/n\mathbb{Z}, 1) \cong (K_0(\mathcal{O}_{n+1}), [\mathcal{O}_{n+1}]_0).$ Now *E* is a finite graph without sinks and $K_0(C^*(E)) \cong K_0(\mathcal{O}_{n+1})$. Then, by Tomforde ([5]), $K_1(C^*(E)) \cong K_1(\mathcal{O}_{n+1})$. We then apply the Kirchberg-Phillips theorem for graph C*-algebras (see Theorem 2.3.28, [5]) to conclude that $C^*(E) \cong \mathcal{O}_{n+1}$.

Kulumani M. Rangaswamy, University of ColcSerre Conjecture, Cuntz Algebras and LeavittRings and Wings Seminar- October 27, 2021
- G. Abrams, P. Ara and M. Siles Molina, Leavitt Path Algebras (book)
- P. Ara, M.A. Moreno and E. Pardo, Non-stable K-theory for graph algebras, Algebra representation Theory, vol. 10 (2007), 157 178.
- T.Y. Lam, Lectures on modules and rings, GTM vol. 189, Springer (1999)
- R. Hazrat and K.M. Rangaswamy, On Graded Irreducible Representations of Leavitt Path Algebras, J. Algebra vol. 450 (2016), 458 - 486.
- M. Tomforde, Structure of graph C*-algebras and generalizations, Graph Algebras - Bridging the gap between analysis and algebra, Proceeding of the workshop in graph algebras, University de Malaga (2007).