Unsettled linear algebra of Fourier transforms of complex-coefficient pseudo-Gaussians

Dave Milovich
Welkin Sciences

Abstract

For complex symmetric $n \times n$ matrices A with positive definite real part, there is a constant factor $\operatorname{det}(A)^{-1 / 2}$ in Fourier transform of $\exp \left(-x^{T} A x / 2\right)$. Choosing $\operatorname{det}(A)^{-1 / 2}$ to be the square root of $\operatorname{det}(A)^{-1}$ with positive real part is correct for $n \leq 2$, but I will give an example for $n=3$ where $\operatorname{det}(A)=\operatorname{det}(B)$ but $\operatorname{det}(A)^{-1 / 2}=-\operatorname{det}(B)^{-1 / 2}$. Characterizing which square root of $\operatorname{det}(A)^{-1}$ is correct is an open problem. I will present my conjecture and my main result, an algorithm for computing the correct square root using a non-Hermitian variant of the Cholesky factorization.

Time and Place: Wednesday, March 8 from 4:30-5:30PM (Mountain Time Zone) in ENGR 187

