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Some Preliminaries

A C∗-algebra A is an algebra with involution ∗ : A → A and a norm
α : A → [0,∞) satisfying the following:

1. A is α-complete

2. α(ab) ≤ α(a)α(b) for all a, b ∈ A
3. α(a)2 = α(a∗a).

The examples to keep in mind will be B(`n2 ) (i.e. Mn), B(`2), and B(H)
for an abitrary Hilbert space H.
Every C∗-algebra “is” a closed subalgebra of B(H) for some Hilbert
space H. (Gelfand-Naimark)
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Some Preliminaries

Definition
A concrete operator system is a self-adjoint unital subspace V ⊂ B(H).
Abstractly, an operator system is a triple (V, {Cn}n∈N, e) where V is a
∗-vector space, {Cn}n∈N is a proper matrix ordering on V and e is an
Archimedean matrix order unit.

Given a ∗-vector space V, we say the collection {Cn}n∈N is a matrix
ordering on V if the following two properties are satisfied:

1. Cn ⊂Mn(V)h is a cone invariant under the involution ∗;
2. α∗Cnα ⊂ Cm for all α ∈Mn,m,m, n ∈ N.

If for each n ∈ N it follows Cn ∩ −Cn = {0} then we say the collection
{Cn}n∈N is a proper matrix ordering. Our use of the term differs just a
bit from convention.
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An element e ∈ V is called a matrix order unit if for any v ∈Mn(V)h
there exists an r > 0 such that ren − v ∈Mn(V)+. (Here we have let
en := In ⊗ e). e is called an Archimedean matrix order unit if we have
the additional property that if v ∈Mn(V) and for all ε > 0 it follows
εen + v ∈Mn(V)+ then v ∈Mn(V)+.

Take away: the positive cones in an operator system thus majorize the
hermitian matrices over V and furthermore they are Archimedean closed.

Theorem ([CE77])
Given any abstract operator system V there exists a Hilbert space and a
concrete operator system W ⊂ B(H) such that V ' W.

Here (and through the rest of the talk), we use ' to denote a complete
order isomorphism of operator systems, i.e., there exists a bijection
ϕ : V → W such that ϕ and ϕ−1 are both completely positive.
Completely positive means that given a linear map ϕ : V → W then for
all n ∈ N the induced nth amplification ϕn :Mn(V)→Mn(W) defined
by

ϕn(v) :=
∑
ij

eie
∗
j ⊗ ϕ(vij), v ∈Mn(V) (1)

is completely positive.
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Why would we care about operator systems (or operator
spaces for that matter)

For me the motivation comes from tensor products. Given two
C∗-algebras Ai, i = 1, 2 one may from the algebraic tensor product
A1 ⊗A2 and consider various C∗-algebra structures on this tensor
product.

Two of particular interest are

A1 ⊗min A2,

A1 ⊗max A2.
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The Concrete Motivation

Consider a concrete operator system V ⊂ B(H) and an element p ∈ V+

which is a projection when viewed as an operator in B(H). Letting
pn := In ⊗ p, consider the following collection of sets {C(pn)}n∈N where

C(pn) := {x ∈Mn(V) : x = x∗, pnxpn ∈ B(Hn)+}. (2)

Proposition (AR)
Let V ⊂ B(H) be an operator system and suppose that p ∈ V where p is
a projection in B(H). The sequence of sets {C(pn)}n is a matrix
ordering on V. Furthermore If p ≤ q ≤ I then q is an Archimedean matrix
order unit for (V, {C(pn)}n).
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It turns out that the collection of cones {C(pn)}n∈N satisfies some
further “natural” properties.

I Let αo : V → [0,∞) denote the order semi-norm induced by the
projection p. Then the cones C(pn) are α-closed.

I Fix n ∈ N and let Jpn := spanC(pn) ∩ −C(pn). Then
Mn(Jp) = Jpn .
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We now wish to consider the quotient ∗-vector space V/Jp where
Jp := spanC(p) ∩ −C(p). For each n ∈ N let

C̃(pn) : = {(xij + Jp)ij ∈Mn(V/Jp) : x = (xij)ij ∈ C(pn)} (3)

= {C(pn) +Mn(Jp)}n∈N. (4)

Theorem (AR)
The triple (V/Jp, {C̃(pn)}n, p+ Jp) is an operator system.

Definition
Given an operator system V ⊂ B(H) with p ∈ B(H) a projection, we call
the set pVp, regarded as linear operators on the Hilbert space pH, the
concrete compression operator system.
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Keep the following compression operator system in mind: with
V ⊂ B(H) and p ∈ V+ as before, let q = I − p. Of particular interest to
us is the abstract analogue of the compression operator system

(p⊕ q)M2(V)(p⊕ q).
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The Abstract Scenario

Consider a ∗-vector space V with matrix ordering {Cn}n. Let
Jn := spanCn ∩ −Cn.
(AR): we have the following string of results similar to what we saw in
the concrete case:

1. For every n ∈ N if x ∈ Jn then x = a+ ib for some a, b ∈ Cn ∩−Cn;

2. Mn(J) = Jn;

3. Consider the collection {C̃n}n such that for each n ∈ N,

C̃n = {(xij + J) ∈Mn(V/J) : x = (xij)ij ∈ Cn}.

Then {C̃n}n is a proper matrix ordering on V/J.
In particular, we have the following:

Proposition (AR)
Suppose that V is a ∗-vector space with matrix ordering {Cn}n and an

Archimedean matrix order unit e. Then (V/J, {C̃n}n, e+ J) is an
operator system.
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We must go on

Lemma (AR)
Let V ⊂ B(H) be an operator system and suppose that p ∈ V is a
projection. Then for any x ∈ V with x = x∗, we have that pxp ≥ 0 in
B(H) if and only if for every ε > 0 there exists a t > 0 such that

x+ εp+ t(I − p) ≥ 0.
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Definition
Let (V, {Cn}n, e) be an operator system, and suppose that p ∈ V with
0 ≤ p ≤ e, i.e., let p ∈ V be a positive contraction of V. For each n ∈ N
and let pn = In ⊗ p. We define the positive cone relative to pn, denoted
C(pn), to be

C(pn) := {x ∈Mn(V) : x = x∗, for all ε > 0 there exists t > 0 (5)

such that x+ εpn + t(en − pn) ∈ Cn}. (6)

An immediate consequence of the previous lemma is that if a positive
contraction p ∈ V is a projection, then for each n ∈ N the positive cone
relative to pn becomes

C(pn) = {x ∈Mn(V) : x = x∗, pnxpn ∈ B(Hn)+}, (7)
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We recall the following definition.

Given an Archimedean order unit space
V then the minimal order norm αm on V is defined for x ∈ V by

αm(x) = sup{|ϕ(x)| : ϕ ∈ S(V)} (8)

where S(V) denotes the set of states on V. It is not difficult to show that
if αo : Vh → [0,∞) denotes the order norm induced by e given by

αo(x) = inf{t > 0 : te± x ∈ V+}, (9)

then αo = αm when restricted to Vh. (Paulsen and Tomforde [PT09])

Proposition (AR)
Let V an operator system and let p ∈ V be a nonzero positive
contraction. Let αm : V → [0,∞) denote the minimal order norm
induced by e. Then αm(p) = 1 if and only if p /∈ Jp.
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As in our previous proposition we will define the family of sets {C̃(pn)}n
where for each n ∈ N we have

C̃(pn) = {(xij + Jp) ∈Mn(V/Jp) : x = (xij) ∈ C(pn)}. (10)

We now have the abstract analogue to theorem on concrete compressions
of operator systems:

Theorem (AR)
Given an operator system V and positive contraction p ∈ V such that
αm(p) = 1, the triple

(V/Jp, {C̃(pn)}n∈N, p+ Jp)

is a non-trivial operator system.

Corollary
Suppose that V ⊂ B(H) is an operator system and that p ∈ V is a
projection in B(H). Then the abstract compression
(V/Jp, {C̃(pn)}n∈N, p+ Jp) is completely order isomorphic to the
concrete compression pVp.
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Definition
Given an operator system V and a positive contraction p ∈ V such that
αm(p) = 1 then we call the operator system (V/Jp, {C̃(pn)}n∈N, p+ Jp)
the abstract compression operator system and denote it by V/Jp.

Though we do not use it here a nice corollary to the previous theorem is
that we may consider compressions of operator systems by finite families
of positive contractions where at least one has minimal norm 1.
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Where are those abstract projections you talked about?????



Abstract Projections

Definition
Let (V, {Cn}n, e) be an abstract operator system and suppose that
0 ≤ p ≤ e for some p ∈ V+ and αm(p) = 1. Set q = e− p. We call p an
abstract projection if the map πp : V →M2(V)/Jp⊕q defined by

πp : x 7→
(
x x
x x

)
+ Jp⊕q

is a complete order embedding.

This leads to a representation theorem.
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Proposition (AR)
Suppose that V is an operator system and that p is an abstract projection
in V. Let q = e− p. Then for every ucp map φ :M2(V)/Jp⊕q →Mn

there exists a k ∈ N and a ucp map ψ :M2(V)/Jp⊕q →Mk such that
ψ(p⊕ 0 + Jp⊕q) and ψ(0⊕ q + Jp⊕q) are projections and satisfying the
property that

φ2n



a 0 0 b
0 0 0 0
0 0 0 0
b∗ 0 0 c

+M2n(Jp⊕q)



=

 φn

((
a 0
0 0

)
+Mn(Jp⊕q)

)
φn

((
0 b
0 0

)
+Mn(Jp⊕q)

)
φn

((
0 0
b∗ 0

)
+Mn(Jp⊕q)

)
φn

((
0 0
0 c

)
+Mn(Jp⊕q)

)


≥ 0

if and only if ψn

((
a b
b∗ c

)
+Mn(Jp⊕q)

)
≥ 0 for all a, b, c ∈Mn(V).



Sketch of proof:

I Construct matrices V,W such that V (φ(p⊕ 0))V ∗ and
W (φ(0⊕ q))W ∗ are the identities (necessarily of different size).

I The map ψ :M2(V)/Jp⊕q →Mk is defined by

(
V 0
0 W

)
φ

(̂
a 0
0 0

)
φ

(̂
0 b
0 0

)
φ

(̂
0 0
c 0

)
φ

(̂
0 0
0 d

)

(
V ∗ 0
0 W ∗

)
.

I ψ is necessarily unital by construction. To show complete positivity
show that φ is supported in the proper corners.
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Theorem (AR)
Suppose that V is an operator system and that p ∈ V is an abstract
projection. Then there exists a unital complete order embedding
π : V → B(H) such that π(p) is a projection in B(H).

Sketch of proof:

I Take the direct sum over all u.c.p. maps ϕ :M2(V)/Jp⊕q →Mn.

I Use the Representation Theorem to replace ϕ with ψ where
ψ(p⊕ 0) maps to a projection.

I Show that this new direct sum is a complete order embedding.
(Unitality comes from construction).
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Theorem (AR)
Let V be an operator system, and suppose that p ∈ V is an abstract
projection. Then p is a projection in its C*-envelope C∗e (V).

Sketch of Proof:

I Use last theorem and suppose π : V → B(H) is a unital complete
order embedding such that π(p) is a projection.

I Let A := C∗(π(V)) and then use universality of the C∗-envelope.

I From this show p is a projection in C∗e (V).

One may compare this theorem with a result of Blecher and Neal [BN11].
They proved that given a unital operator space (E , u) then u is

necessarily a unitary in the ternary envelope T (E).
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Some Remarks on Correlation Sets



Let n, k ∈ N. The tuple {p(a, b|x, y) : x, y ∈ [n], a, b ∈ [k]} is called a
correlation if

I p(a, b|x, y) ≥ 0 for each x, y ∈ [n], a, b ∈ [k]; and

I for each x, y we have
∑

ab p(a, b|x, y) = 1.

Here we refer to the number n as the number of experiments and k as
the number of outcomes.

Suppose for each x ∈ [n] and a ∈ [k] the quantity

pA(a|x) :=
∑
b

p(a, b|x, y) (11)

is well-defined. Similarly assume for each y ∈ [n] and b ∈ [k] the quantity

pB(b|y) :=
∑
a

p(a, b|x, y) (12)

is well-defined.



Let n, k ∈ N. The tuple {p(a, b|x, y) : x, y ∈ [n], a, b ∈ [k]} is called a
correlation if

I p(a, b|x, y) ≥ 0 for each x, y ∈ [n], a, b ∈ [k]; and

I for each x, y we have
∑

ab p(a, b|x, y) = 1.

Here we refer to the number n as the number of experiments and k as
the number of outcomes.

Suppose for each x ∈ [n] and a ∈ [k] the quantity

pA(a|x) :=
∑
b

p(a, b|x, y) (11)

is well-defined. Similarly assume for each y ∈ [n] and b ∈ [k] the quantity

pB(b|y) :=
∑
a

p(a, b|x, y) (12)

is well-defined.



Let n, k ∈ N. The tuple {p(a, b|x, y) : x, y ∈ [n], a, b ∈ [k]} is called a
correlation if

I p(a, b|x, y) ≥ 0 for each x, y ∈ [n], a, b ∈ [k]; and

I for each x, y we have
∑

ab p(a, b|x, y) = 1.

Here we refer to the number n as the number of experiments and k as
the number of outcomes.

Suppose for each x ∈ [n] and a ∈ [k] the quantity

pA(a|x) :=
∑
b

p(a, b|x, y) (11)

is well-defined. Similarly assume for each y ∈ [n] and b ∈ [k] the quantity

pB(b|y) :=
∑
a

p(a, b|x, y) (12)

is well-defined.



Let n, k ∈ N. The tuple {p(a, b|x, y) : x, y ∈ [n], a, b ∈ [k]} is called a
correlation if

I p(a, b|x, y) ≥ 0 for each x, y ∈ [n], a, b ∈ [k]; and

I for each x, y we have
∑

ab p(a, b|x, y) = 1.

Here we refer to the number n as the number of experiments and k as
the number of outcomes.

Suppose for each x ∈ [n] and a ∈ [k] the quantity

pA(a|x) :=
∑
b

p(a, b|x, y) (11)

is well-defined. Similarly assume for each y ∈ [n] and b ∈ [k] the quantity

pB(b|y) :=
∑
a

p(a, b|x, y) (12)

is well-defined.



If the correlation p(a, b|x, y) satisfies these properties then we call it
non-signalling and denote the set of all such correlations as Cns(n, k).
The non-signalling conditions model that Alice and Bob perform their
experiments independently without talking to one-another.



PVMS

Consider the set {P1, ..., Pn} ⊂ B(H) where each Pi is a projection and∑
Pi = I. We call such a set a projection-valued measure. We call

p(a, b|x, y) ∈ Cns(n, k) a quantum-commuting correlation if there exists
a Hilbert space H a unit vector η ∈ H and projection-valued measures
{Ex,a}ka=1, {Fy,b}kb=1 for each x, y ∈ [n] such that Ex,aFy,b = Fy,bEx,a

for each x, y, a, b and such that p(a, b|x, y) = 〈η|Ex,aFy,bη〉. The set of
all quantum commuting correlations with n experiments and k outcomes
is denoted Cqc(n, k), and it follows that Cqc(n, k) is a closed convex
subset of Cns(n, k).
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a Hilbert space H a unit vector η ∈ H and projection-valued measures
{Ex,a}ka=1, {Fy,b}kb=1 for each x, y ∈ [n] such that Ex,aFy,b = Fy,bEx,a

for each x, y, a, b and such that p(a, b|x, y) = 〈η|Ex,aFy,bη〉. The set of
all quantum commuting correlations with n experiments and k outcomes
is denoted Cqc(n, k), and it follows that Cqc(n, k) is a closed convex
subset of Cns(n, k).



The string of inclusions you have all seen (if you are an
operator algebraist)
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Question ([Tsi80])
Does Cqa(n, k) = Cqc(n, k) for all n, k ∈ N?

Very nice work from many authors went into the study of this problem.
Operator system techiniques were used in studying correlation sets. (see
e.g. [Pau+16; Lup+20])
Tsirelson’s conjecture in fact does not hold as recently shown in [Ji+20].
Though sharp bounds on (n, k) are not known.
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Let us take a look at the following:

Proposition
Let n and k be positive integers. Then the following statements are
equivalent.

1. {p(a, b|x, y)} ∈ Cqc(n, k) (resp. {p(a, b|x, y)} ∈ Cq(n, k)).

2. There exists a (resp. finite dimensional) C*-algebra A, projection
valued measures {Ex,a}ka=1, {Fy,b}kb=1 ⊂ A for each x, y ≤ n
satisfying Ex,aFy,b = Fy,bEx,a for all x, y ≤ n and a, b ≤ k, and a
state φ : A → C such that p(a, b|x, y) = φ(Ex,aFy,b).

3. There exists an operator system V ⊂ B(H) (resp. for a finite
dimensional Hilbert space H), projection valued measures
{Ex,a}ka=1, {Fy,b}kb=1 for each x, y ≤ n satisfying Ex,aFy,b ∈ V and
Ex,aFy,b = Fy,bEx,a for all x, y ≤ n and a, b ≤ k, and a state
φ : V → C such that p(a, b|x, y) = φ(Ex,aFy,b).



Let us take a look at the following:

Proposition
Let n and k be positive integers. Then the following statements are
equivalent.

1. {p(a, b|x, y)} ∈ Cqc(n, k) (resp. {p(a, b|x, y)} ∈ Cq(n, k)).

2. There exists a (resp. finite dimensional) C*-algebra A, projection
valued measures {Ex,a}ka=1, {Fy,b}kb=1 ⊂ A for each x, y ≤ n
satisfying Ex,aFy,b = Fy,bEx,a for all x, y ≤ n and a, b ≤ k, and a
state φ : A → C such that p(a, b|x, y) = φ(Ex,aFy,b).

3. There exists an operator system V ⊂ B(H) (resp. for a finite
dimensional Hilbert space H), projection valued measures
{Ex,a}ka=1, {Fy,b}kb=1 for each x, y ≤ n satisfying Ex,aFy,b ∈ V and
Ex,aFy,b = Fy,bEx,a for all x, y ≤ n and a, b ≤ k, and a state
φ : V → C such that p(a, b|x, y) = φ(Ex,aFy,b).



Definition
Let n, k ∈ N. We call an operator system V a non-signalling operator
system if it is the linear span of positive operators
{Q(a, b|x, y) : a, b ≤ k, x, y ≤ n} ⊂ V, called the generators of V, with
the properties that

∑
a,bQ(a, b|x, y) = e for each choice of x, y ≤ n and

that the operators

E(a|x) :=
∑
b

Q(a, b|x, y)

and
F (b|y) :=

∑
a

Q(a, b|x, y)

are well-defined (i.e. E(a|x) is independent of the choice of y and F (b|y)
is independent to the choice of x).

We call an operator system V a quantum commuting operator system if
it is a non-signalling operator system with the property that each
generator Q(a, b|x, y) is an abstract projection in V.
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The next theorem justifies the choice of terminology in the last definition.

Theorem (AR)
A correlation {p(a, b|x, y)} is non-signalling (resp. quantum commuting)
if and only if there exists a non-signalling (resp. quantum commuting)
operator system V with generators {Q(a, b|x, y)} and a state φ : V → C
such that p(a, b|x, y) = φ(Q(a, b|x, y)) for each a, b, x, y.
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