K-theory: An Elementary Introduction

Mark Tomforde

October 14, 2020

Preliminaries

A Hilbert space is a vector space H with an inner product $\langle\cdot, \cdot\rangle$ that is complete with respect to the norm $\|x\|:=\sqrt{\langle x, x\rangle}$.

$$
B(H):=\{T: H \rightarrow H: T \text { is linear and continuous }\} .
$$

Preliminaries

A Hilbert space is a vector space H with an inner product $\langle\cdot, \cdot\rangle$ that is complete with respect to the norm $\|x\|:=\sqrt{\langle x, x\rangle}$.

$$
B(H):=\{T: H \rightarrow H: T \text { is linear and continuous }\} .
$$

For any $T \in B(H)$ there is a unique $T^{*} \in B(H)$, called the adjoint, for which

$$
\langle T(x), y\rangle=\left\langle x, T^{*}(y)\right\rangle \text { for all } x, y \in H
$$

$B(H)$ is a *-algebra.

Preliminaries

A Hilbert space is a vector space H with an inner product $\langle\cdot, \cdot\rangle$ that is complete with respect to the norm $\|x\|:=\sqrt{\langle x, x\rangle}$.

$$
B(H):=\{T: H \rightarrow H: T \text { is linear and continuous }\} .
$$

For any $T \in B(H)$ there is a unique $T^{*} \in B(H)$, called the adjoint, for which

$$
\langle T(x), y\rangle=\left\langle x, T^{*}(y)\right\rangle \text { for all } x, y \in H
$$

$B(H)$ is a *-algebra. Also:
$K(H):=\{T \in B(H): \overline{T(\text { Ball } H)}$ compact $\}=\overline{\{T \in B(H): \operatorname{rank}(T)<\infty\}}$.
Fact $K(H) \triangleleft B(H)$. The Calkin algebra is $\mathcal{C}(H):=B(H) / K(H)$.

Preliminaries

A Hilbert space is a vector space H with an inner product $\langle\cdot, \cdot\rangle$ that is complete with respect to the norm $\|x\|:=\sqrt{\langle x, x\rangle}$.

$$
B(H):=\{T: H \rightarrow H: T \text { is linear and continuous }\} .
$$

For any $T \in B(H)$ there is a unique $T^{*} \in B(H)$, called the adjoint, for which

$$
\langle T(x), y\rangle=\left\langle x, T^{*}(y)\right\rangle \text { for all } x, y \in H
$$

$B(H)$ is a *-algebra. Also:
$K(H):=\{T \in B(H): \overline{T(\text { Ball } H)}$ compact $\}=\overline{\{T \in B(H): \operatorname{rank}(T)<\infty\}}$.
Fact $K(H) \triangleleft B(H)$. The Calkin algebra is $\mathcal{C}(H):=B(H) / K(H)$.
A C^{*}-algebra is a closed $*$-subalgebra of $B(H)$.

Preliminaries

C^{*}-algebras have a connection with topology
Recall:

$$
C(X):=\{f: X \rightarrow \mathbb{C}: f \text { is continuous }\} .
$$

Preliminaries

C^{*}-algebras have a connection with topology
Recall:

$$
C(X):=\{f: X \rightarrow \mathbb{C}: f \text { is continuous }\} .
$$

Theorem: If A is a unital commutative C^{*}-algebra, then $A \cong C(X)$ for some compact Hausdorff space X.

Preliminaries

C^{*}-algebras have a connection with topology . .
Recall:

$$
C(X):=\{f: X \rightarrow \mathbb{C}: f \text { is continuous }\} .
$$

Theorem: If A is a unital commutative C^{*}-algebra, then $A \cong C(X)$ for some compact Hausdorff space X.

All topological information of X is encoded as algebraic information in $C(X)$, So "abelian C^{*}-algebras" are the same as "compact Hausdorff topological spaces".

The study of C^{*}-algebras allows one to develop "noncommutative topology".

Question What is K-theory (for Operator Algebras)? Short Answer: A Homology Theory for C^{*}-algebras.

Question What is K-theory (for Operator Algebras)? Short Answer: A Homology Theory for C^{*}-algebras.

Question Why do I, as an operator algebraist, care about K-theory? Short Answer: It provides some of the most important invariants for C^{*}-algebras. These invariants allow you to show that particular C^{*}-algebras are different, ascertain knowledge about the C^{*}-algebra, and sometimes (perhaps surprisingly often) show two C^{*}-algebras are the same.

Question What is K-theory (for Operator Algebras)? Short Answer: A Homology Theory for C^{*}-algebras.

Question Why do I, as an operator algebraist, care about K-theory? Short Answer: It provides some of the most important invariants for C^{*}-algebras. These invariants allow you to show that particular C^{*}-algebras are different, ascertain knowledge about the C^{*}-algebra, and sometimes (perhaps surprisingly often) show two C^{*}-algebras are the same.

Question: What does the K stand for?
Answer: Grothendieck used the letter K to stand for "Klasse", which means "class" in German (Grothendieck 's mother tongue).

Question What is K-theory (for Operator Algebras)?
Short Answer: A Homology Theory for C^{*}-algebras.
Question Why do I, as an operator algebraist, care about K-theory? Short Answer: It provides some of the most important invariants for C^{*}-algebras. These invariants allow you to show that particular C^{*}-algebras are different, ascertain knowledge about the C^{*}-algebra, and sometimes (perhaps surprisingly often) show two C^{*}-algebras are the same.

Question: What does the K stand for?
Answer: Grothendieck used the letter K to stand for "Klasse", which means "class" in German (Grothendieck 's mother tongue).

Question Where does K-theory (for Operator Algebras) come from? Short Answer: Algebraic/Differential Topology.

Topological K-theory \subseteq Operator K-theory \subseteq Algebraic K-theory
(cohomology for (homology for C^{*}-algebras)
(homology for rings)

What is a homology for C^{*}-algebras?

First, recall that we say a sequence of objects and morphisms

is exact at B if im $f=\operatorname{ker} g$. We say a sequence is exact if it is exact at all locations.

What is a homology for C^{*}-algebras?

First, recall that we say a sequence of objects and morphisms

$$
\ldots \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow \ldots
$$

is exact at B if im $f=\operatorname{ker} g$. We say a sequence is exact if it is exact at all locations.

A short exact sequence is an exact sequence of the form

$$
0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0 .
$$

Note that if A, B, and C are C^{*}-algebras, then $\operatorname{im} f=\operatorname{ker} g, f$ is injective, g is surjective, A may be identified with an ideal in B, and $C \cong B / A$. So essentially any short exact sequence looks like

$$
0 \longrightarrow I \longmapsto \xrightarrow{i} A \xrightarrow{\pi} A / I \longrightarrow 0 .
$$

for a C^{*}-algebra A and an ideal I of A.

What is a homology for C^{*}-algebras?

Motivation: Algebraic Topology

What is a homology for C^{*}-algebras?

Motivation: Algebraic Topology
To begin, a homology consists of a sequence of covariant functors $H_{n}: \mathbf{C}^{*} \rightarrow \mathbf{A b G p}$ for each $n \in \mathbb{N} \cup\{0\}$.

Notation for the functor H_{n} :

$$
\begin{array}{rll}
A & \rightsquigarrow & H_{n}(A) \\
f: A \rightarrow B & \rightsquigarrow & f_{n}: H_{n}(A) \rightarrow H_{n}(B)
\end{array}
$$

What is a homology for C^{*}-algebras?

Motivation: Algebraic Topology
To begin, a homology consists of a sequence of covariant functors $H_{n}: \mathbf{C}^{*} \rightarrow \mathbf{A b G p}$ for each $n \in \mathbb{N} \cup\{0\}$.

Notation for the functor H_{n} :

$$
\begin{array}{rll}
A & \rightsquigarrow & H_{n}(A) \\
f: A \rightarrow B & \rightsquigarrow & f_{n}: H_{n}(A) \rightarrow H_{n}(B)
\end{array}
$$

We require each H_{n} functor to be half-exact: For each $n \in \mathbb{N} \cup\{0\}$, whenever we have a short exact sequence

$$
0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0
$$

we may apply H_{n} to get a sequence

$$
H_{n}(A) \xrightarrow{f_{n}} H_{n}(B) \xrightarrow{g_{n}} H_{n}(C)
$$

that is exact at $H_{n}(B)$. (But typically not at $H_{n}(A)$ or $H_{n}(C)$.)

What is a homology for C^{*}-algebras?

Thus, when we have a short exact sequence

$$
0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0
$$

we may apply each H_{n} to get

$$
\begin{aligned}
& H_{0}(A) \xrightarrow{f_{0}} H_{0}(B) \xrightarrow{g_{0}} H_{0}(C) \\
& H_{1}(A) \xrightarrow{f_{1}} H_{1}(B) \xrightarrow{g_{1}} H_{1}(C) \\
& H_{2}(A) \xrightarrow{f_{2}} H_{2}(B) \xrightarrow{g_{2}} H_{2}(C)
\end{aligned}
$$

For each n we require a connecting homomorphism $\delta_{n}: H_{n}(C) \rightarrow H_{n+1}(A)$ that makes a long exact sequence when inserted above. That is . . .

What is a homology for C^{*}-algebras?

We usually write this long exact sequence horizontally.

$$
H_{0}(A) \xrightarrow{f_{0}} H_{0}(B) \xrightarrow{g_{0}} H_{0}(C) \xrightarrow{\delta_{0}} H_{1}(A) \xrightarrow{f_{1}} H_{1}(B) \xrightarrow{g_{1}} H_{1}(C) \xrightarrow{\delta_{1}} \ldots
$$

What is a homology for C^{*}-algebras?

In topology (when we assign long exact sequences of abelian groups to topological spaces), one can build the H_{n}-groups in different ways.

However, there is an axiomatization of a "unique" homology. One can prove that if the Eilenberg-Steenrod Axioms are satisfied, then the H_{n}-groups you get are the same (at least, on large classes of spaces).

What is a homology for C^{*}-algebras?

In topology (when we assign long exact sequences of abelian groups to topological spaces), one can build the H_{n}-groups in different ways.

However, there is an axiomatization of a "unique" homology. One can prove that if the Eilenberg-Steenrod Axioms are satisfied, then the H_{n}-groups you get are the same (at least, on large classes of spaces).

In a cohomology one uses contravariant functors, and you "reverse the arrows".

What is a homology for C^{*}-algebras?

In topology (when we assign long exact sequences of abelian groups to topological spaces), one can build the H_{n}-groups in different ways.

However, there is an axiomatization of a "unique" homology. One can prove that if the Eilenberg-Steenrod Axioms are satisfied, then the H_{n}-groups you get are the same (at least, on large classes of spaces).

In a cohomology one uses contravariant functors, and you "reverse the arrows".

Our homology for C^{*}-algebras is called K-theory and we'll use the symbol K_{n}, in place of H_{n}, for our functors.

How do we build/define our K_{n}-groups? We look to topological K-theory, which was developed first, for motivation and inspiration.

Motivation: Topological K-theory

Topological K-theory is a cohomology for compact Hausdorff spaces.
The Big Idea: Fix a compact Hausdorff space X. The $0^{\text {th }} K$-group for X is constructed using vector bundles over X, and the other groups are obtained by "suspending"; i.e., the $n^{\text {th }}$ group is the $0^{\text {th }}$ group of the $n^{\text {th }}$ suspension $S^{n} X$.

Motivation: Topological K-theory

Topological K-theory is a cohomology for compact Hausdorff spaces.
The Big Idea: Fix a compact Hausdorff space X. The $0^{\text {th }} K$-group for X is constructed using vector bundles over X, and the other groups are obtained by "suspending"; i.e., the $n^{\text {th }}$ group is the $0^{\text {th }}$ group of the $n^{\text {th }}$ suspension $S^{n} X$.

How do we generalize to C^{*}-algebras (and rings)?
Noncommutative topology: We use the following functor

$$
\begin{array}{rll}
X & \rightsquigarrow & C(X) \\
f: X \rightarrow Y & \rightsquigarrow & f^{*}: C(Y) \rightarrow C(X) \\
& & \text { where } f^{*}(g):=g \circ f
\end{array}
$$

Note: This functor is contravariant.

Motivation: Topological K-theory

Swan's Theorem: The category of vector bundles over a compact space X is equivalent (i.e., isomorphic in the category sense) to the category of finitely-generated projective modules over $C(X)$.

Finitely-generated: has a finite spanning set.
Projective: A module P is projective if for every surjective module homomorphism $f: N \rightarrow M$ and every module homomorphism $g: P \rightarrow M$, there exists a module homomorphism $h: P \rightarrow N$ such that $f \circ h=g$.

(This is the definition of projective module, but it is equivalent to a handful of other properties.)

Motivation: Topological K-theory

Topological K-theory for a locally compact space X $0^{\text {th }}$ group formed using (isomorphism classes of) Vector Bundles over X. Higher groups obtained by "suspending".

Motivation: Topological K-theory

Topological K-theory for a locally compact space X $0^{\text {th }}$ group formed using (isomorphism classes of) Vector Bundles over X. Higher groups obtained by "suspending".

Operator (resp. Algebraic) K-theory for a C^{*}-algebra (resp. ring) R $0^{\text {th }}$ group formed using (isomorphism classes) of Finitely-Generated Projective Modules over R.

Higher groups obtained by "suspending".

Motivation: Topological K-theory

Let R be a C^{*}-algebra, and let M be a projective module over R.

Motivation: Topological K-theory

Let R be a C^{*}-algebra, and let M be a projective module over R.

Then M is a direct summand of a free module; i.e., there exists N such that $M \oplus N$ is free.

Motivation: Topological K-theory

Let R be a C^{*}-algebra, and let M be a projective module over R.
Then M is a direct summand of a free module; i.e., there exists N such that $M \oplus N$ is free. If M is finitely generated, this free module can be chosen of finite rank; i.e., there exists $n \in \mathbb{N}$ such that

$$
M \oplus N \cong R^{n}
$$

Motivation: Topological K-theory

Let R be a C^{*}-algebra, and let M be a projective module over R.
Then M is a direct summand of a free module; i.e., there exists N such that $M \oplus N$ is free. If M is finitely generated, this free module can be chosen of finite rank; i.e., there exists $n \in \mathbb{N}$ such that

$$
M \oplus N \cong R^{n}
$$

This means M is a subspace of R^{n}. But, as you know, End $R^{n} \cong M_{n}(R)$, and we can identify the subspace M with the image of the projection $p \in M_{n}(R)$ onto M.

Motivation: Topological K-theory

Let R be a C^{*}-algebra, and let M be a projective module over R.
Then M is a direct summand of a free module; i.e., there exists N such that $M \oplus N$ is free. If M is finitely generated, this free module can be chosen of finite rank; i.e., there exists $n \in \mathbb{N}$ such that

$$
M \oplus N \cong R^{n}
$$

This means M is a subspace of R^{n}. But, as you know, End $R^{n} \cong M_{n}(R)$, and we can identify the subspace M with the image of the projection $p \in M_{n}(R)$ onto M.

Q: When will two subspaces of R^{n} be isomorphic?
A: When there is an isomorphism (i.e., a partial isometry) between them.
If p and q are the associated projections, this occurs iff there exists
$v \in M_{n}(R)$ with $p=v v^{*}$ and $q=v^{*} v$. Murray-von Neumann equivalence!

Motivation: Topological K-theory

Topological K-theory for a locally compact space X $0^{\text {th }}$ group formed using (isomorphism classes of) Vector Bundles over X. Higher groups obtained by "suspending".

Operator (resp. Algebraic) K-theory for a C^{*}-algebra (resp. ring) R $0^{\text {th }}$ group formed using (isomorphism classes) of Finitely-Generated Projective Modules over R.

Motivation: Topological K-theory

Topological K-theory for a locally compact space X $0^{\text {th }}$ group formed using (isomorphism classes of) Vector Bundles over X. Higher groups obtained by "suspending".

Operator (resp. Algebraic) K-theory for a C^{*}-algebra (resp. ring) R $0^{\text {th }}$ group formed using (isomorphism classes) of Finitely-Generated Projective Modules over R.
. . . or equivalently . . .
$0^{\text {th }}$ group constructed using Murray-von Neumann equivalence classes of projections (resp. idempotents) in square matrices over the C^{*}-algebra (resp. ring).
Higher groups obtained by "suspending".

Motivation: Topological K-theory

Topological K-theory for a locally compact space X $0^{\text {th }}$ group formed using (isomorphism classes of) Vector Bundles over X. Higher groups obtained by "suspending".

Operator (resp. Algebraic) K-theory for a C^{*}-algebra (resp. ring) R $0^{\text {th }}$ group formed using (isomorphism classes) of Finitely-Generated Projective Modules over R.
. . . or equivalently . . .
$0^{\text {th }}$ group constructed using Murray-von Neumann equivalence classes of projections (resp. idempotents) in square matrices over the C^{*}-algebra (resp. ring).
Higher groups obtained by "suspending".
Let's focus on constructing K_{0} for C^{*}-algebras and go through details.

Constructing the K_{0}-group

Let A be a C^{*}-algebra. If p and q are projections in A, then $p+q$ may not be a projection. (It is precisely when $p \perp q$.)

Constructing the K_{0}-group

Let A be a C^{*}-algebra. If p and q are projections in A, then $p+q$ may not be a projection. (It is precisely when $p \perp q$.)

However, in $M_{2}(A)$ we can identify p with $\left(\begin{array}{ll}p & 0 \\ 0 & 0\end{array}\right)$, and we can identify q with $\left(\begin{array}{ll}q & 0 \\ 0 & 0\end{array}\right) \sim\left(\begin{array}{ll}0 & 0 \\ 0 & q\end{array}\right)$.

We can then define a sum

$$
p \oplus q:=\left(\begin{array}{ll}
p & 0 \\
0 & q
\end{array}\right) .
$$

Constructing the K_{0}-group

Let A be a C^{*}-algebra. If p and q are projections in A, then $p+q$ may not be a projection. (It is precisely when $p \perp q$.)

However, in $M_{2}(A)$ we can identify p with $\left(\begin{array}{ll}p & 0 \\ 0 & 0\end{array}\right)$, and we can identify q with $\left(\begin{array}{ll}q & 0 \\ 0 & 0\end{array}\right) \sim\left(\begin{array}{ll}0 & 0 \\ 0 & q\end{array}\right)$.

We can then define a sum

$$
p \oplus q:=\left(\begin{array}{ll}
p & 0 \\
0 & q
\end{array}\right) .
$$

Likewise for $p \in M_{n}(A)$ and $q \in M_{k}(A)$, we can define

$$
p \oplus q:=\left(\begin{array}{ll}
p & 0 \\
0 & q
\end{array}\right) \in M_{n+k}(A) .
$$

The K_{0}-group for Unital C^{*}-algebras

Let A be a unital C^{*}-algebra. Embed $M_{n}(A)$ in $M_{n+1}(A)$ by $x \mapsto\left(\begin{array}{cc}x & 0 \\ 0 & 0\end{array}\right)$. Define

$$
M_{\infty}(A):=\bigcup_{n=1}^{\infty} M_{n}(A)
$$

Note: $M_{\infty}(A)$ is the non-closed $*$-algebra of infinite matrices that have only finitely many nonzero entries. (Also, $\overline{M_{\infty}(\mathbb{C})}=\mathcal{K}(\mathcal{H})$.)

The K_{0}-group for Unital C^{*}-algebras

Let A be a unital C^{*}-algebra. Embed $M_{n}(A)$ in $M_{n+1}(A)$ by $x \mapsto\left(\begin{array}{cc}x & 0 \\ 0 & 0\end{array}\right)$. Define

$$
M_{\infty}(A):=\bigcup_{n=1}^{\infty} M_{n}(A)
$$

Note: $M_{\infty}(A)$ is the non-closed $*$-algebra of infinite matrices that have only finitely many nonzero entries. (Also, $\overline{M_{\infty}(\mathbb{C})}=\mathcal{K}(\mathcal{H})$.) Define

$$
V(A):=\left\{[p]: p \in \operatorname{Proj} M_{\infty}(A)\right\}
$$

with

$$
[p]+[q]:=\left[\left(\begin{array}{ll}
p & 0 \\
0 & q
\end{array}\right)\right] .
$$

The K_{0}-group for Unital C^{*}-algebras

Let A be a unital C^{*}-algebra. Embed $M_{n}(A)$ in $M_{n+1}(A)$ by $x \mapsto\left(\begin{array}{cc}x & 0 \\ 0 & 0\end{array}\right)$. Define

$$
M_{\infty}(A):=\bigcup_{n=1}^{\infty} M_{n}(A)
$$

Note: $M_{\infty}(A)$ is the non-closed $*$-algebra of infinite matrices that have only finitely many nonzero entries. (Also, $\overline{M_{\infty}(\mathbb{C})}=\mathcal{K}(\mathcal{H})$.) Define

$$
V(A):=\left\{[p]: p \in \operatorname{Proj} M_{\infty}(A)\right\}
$$

with

$$
[p]+[q]:=\left[\left(\begin{array}{ll}
p & 0 \\
0 & q
\end{array}\right)\right] .
$$

(The symbol V is a historical carryover - it stands for "vector bundle".) Fact: $V(A)$ is an abelian semigroup with identity (i.e., an abelian monoid). We want a group.

The Grothendieck Group of a Semigroup

Let $(V,+)$ be an abelian semigroup with identity.

The Grothendieck Group of a Semigroup

Let $(V,+)$ be an abelian semigroup with identity.
Consider a pair $(h, k) \in V \times V$ and "think of it" representing $h-k$.
Define an equivalence relation \equiv on $V \times V$ by

$$
\left(h_{1}, k_{1}\right) \equiv\left(h_{2}, k_{2}\right) \Longleftrightarrow \exists x \in V \text { s.t. } h_{1}+k_{2}+x=h_{2}+k_{1}+x .
$$

Why the x ? To get transitivity.

The Grothendieck Group of a Semigroup

Let $(V,+)$ be an abelian semigroup with identity.
Consider a pair $(h, k) \in V \times V$ and "think of it" representing $h-k$.
Define an equivalence relation \equiv on $V \times V$ by

$$
\left(h_{1}, k_{1}\right) \equiv\left(h_{2}, k_{2}\right) \Longleftrightarrow \exists x \in V \text { s.t. } h_{1}+k_{2}+x=h_{2}+k_{1}+x .
$$

Why the x ? To get transitivity.

The Grothendieck Group is the set of equivalence classes
Groth $V:=\{[(h, k)]: h, k \in V\} w /\left[\left(h_{1}, k_{1}\right)\right]+\left[\left(h_{2}, k_{2}\right)\right]=\left[\left(h_{1}+h_{2}, k_{1}+k_{2}\right)\right]$.

The Grothendieck Group of a Semigroup

Let $(V,+)$ be an abelian semigroup with identity.
Consider a pair $(h, k) \in V \times V$ and "think of it" representing $h-k$.
Define an equivalence relation \equiv on $V \times V$ by

$$
\left(h_{1}, k_{1}\right) \equiv\left(h_{2}, k_{2}\right) \Longleftrightarrow \exists x \in V \text { s.t. } h_{1}+k_{2}+x=h_{2}+k_{1}+x .
$$

Why the x ? To get transitivity.

The Grothendieck Group is the set of equivalence classes
Groth $V:=\{[(h, k)]: h, k \in V\} w /\left[\left(h_{1}, k_{1}\right)\right]+\left[\left(h_{2}, k_{2}\right)\right]=\left[\left(h_{1}+h_{2}, k_{1}+k_{2}\right)\right]$. We often write $[(h, k)]$ as the formal difference $h-k$. But keep in mind: $h_{1}-k_{1}=h_{2}-k_{2}$ iff $\exists x$ s.t. $h_{1}+k_{2}+x=h_{2}+k_{1}+x$.

Groth V is an abelian group and universal for V in the following sense: We can "include" $V \rightarrow$ Groth V by $h \mapsto(h, 0)$, (this isn't always injective). If $\underset{\sim}{G}$ is a group and there is a homomorphism $\phi: V \rightarrow G$, then ϕ extends to $\widetilde{\phi}$: Groth $V \rightarrow G$ by $\widetilde{\phi}(h-k)=\phi(h)-\phi(k)$.

Examples:

Let $V=\{0,1,2,3, \ldots\}$ with + . Then Groth $V \cong \mathbb{Z}$.

Examples:

Let $V=\{0,1,2,3, \ldots\}$ with + . Then Groth $V \cong \mathbb{Z}$.

Let $V=\{0,1,2,3, \ldots\} \cup\{\infty\}$ with + . Then Groth $V \cong 0$.
(b/c $x+\infty=y+\infty$ for all x, y)

Examples:

Let $V=\{0,1,2,3, \ldots\}$ with + . Then Groth $V \cong \mathbb{Z}$.

Let $V=\{0,1,2,3, \ldots\} \cup\{\infty\}$ with + . Then Groth $V \cong 0$.
(b/c $x+\infty=y+\infty$ for all x, y)

Let $V=\{1,2,3, \ldots\}$ with \times. Then Groth $V \cong \mathbb{Q}^{+}$.

Constructing the K_{0}-group

Back to $K_{0}(A)$. .
A is a unital C^{*}-algebra.

$$
V(A):=\left\{[p]: p \in \operatorname{Proj} M_{\infty}(A)\right\} \text { with }[p]+[q]=\left[\left(\begin{array}{ll}
p & 0 \\
0 & q
\end{array}\right)\right] .
$$

Constructing the K_{0}-group

Back to $K_{0}(A)$. .
A is a unital C^{*}-algebra.

$$
V(A):=\left\{[p]: p \in \operatorname{Proj} M_{\infty}(A)\right\} \text { with }[p]+[q]=\left[\left(\begin{array}{ll}
p & 0 \\
0 & q
\end{array}\right)\right] .
$$

We then define

$$
K_{0}(A):=\operatorname{Groth} V(A)=\left\{[p]-[q]: p, q \in \operatorname{Proj} M_{\infty}(A)\right\} .
$$

Constructing the K_{0}-group

Back to $K_{0}(A)$. .
A is a unital C^{*}-algebra.

$$
V(A):=\left\{[p]: p \in \operatorname{Proj} M_{\infty}(A)\right\} \text { with }[p]+[q]=\left[\left(\begin{array}{ll}
p & 0 \\
0 & q
\end{array}\right)\right] .
$$

We then define

$$
K_{0}(A):=\operatorname{Groth} V(A)=\left\{[p]-[q]: p, q \in \operatorname{Proj} M_{\infty}(A)\right\} .
$$

Also, we want K_{0} to be a functor, so if $h: A \rightarrow B$ is a $*$-homomorphism, we define $h_{0}: K_{0}(A) \rightarrow K_{0}(B)$ by

$$
h_{0}([p]-[q])=[h(p)]-[h(q)] .
$$

Constructing the K_{0}-group

What about when A is nonunital?

Constructing the K_{0}-group

What about when A is nonunital? Let A be a nonunital C^{*}-algebra. Let A^{1} be its (minimal) unitization. We have a short exact sequence

$$
0 \longrightarrow A \xrightarrow{i} A^{1} \xrightarrow{\pi} \mathbb{C} \longrightarrow 0
$$

and both A^{1} and \mathbb{C} are unital, so using our prior definition we obtain $\pi_{0}: K_{0}\left(A^{1}\right) \rightarrow K_{0}(\mathbb{C}) \cong \mathbb{Z}$. We then define

$$
K_{0}(A):=\operatorname{ker} \pi_{0}
$$

Constructing the K_{0}-group

What about when A is nonunital? Let A be a nonunital C^{*}-algebra. Let A^{1} be its (minimal) unitization. We have a short exact sequence

$$
0 \longrightarrow A \xrightarrow{i} A^{1} \xrightarrow{\pi} \mathbb{C} \longrightarrow 0
$$

and both A^{1} and \mathbb{C} are unital, so using our prior definition we obtain $\pi_{0}: K_{0}\left(A^{1}\right) \rightarrow K_{0}(\mathbb{C}) \cong \mathbb{Z}$. We then define

$$
K_{0}(A):=\operatorname{ker} \pi_{0}
$$

Fact: It turns out, that $K_{0}\left(A^{1}\right) \cong K_{0}(A) \oplus \mathbb{Z}$ when A is nonunital.
Fact: If A has a countable approximate unit consisting of projections, then

$$
K_{0}(A) \cong \operatorname{Groth} V(A)=\left\{[p]-[q]: p, q \in \operatorname{Proj} M_{\infty}(A)\right\}
$$

Examples of K_{0}

$\mathbb{C}, M_{n}(\mathbb{C})$, and $\mathcal{K}(\mathcal{H})$
Projections in $M_{\infty}(\mathbb{C})$ are finite rank, so $V(\mathbb{C}) \cong\{0,1,2, \ldots\}$ and

$$
K_{0}(\mathbb{C}) \cong \mathbb{Z} .
$$

Examples of K_{0}

$\mathbb{C}, M_{n}(\mathbb{C})$, and $\mathcal{K}(\mathcal{H})$
Projections in $M_{\infty}(\mathbb{C})$ are finite rank, so $V(\mathbb{C}) \cong\{0,1,2, \ldots\}$ and

$$
K_{0}(\mathbb{C}) \cong \mathbb{Z} .
$$

Likewise, $M_{\infty}\left(M_{n}(\mathbb{C})\right)=M_{\infty}(\mathbb{C})$, and projections in $\mathcal{K}(\mathcal{H})$ and $M_{\infty}(\mathcal{K}(\mathcal{H}))$ are finite rank, so $V\left(M_{n}(\mathbb{C})\right) \cong V(\mathcal{K}(\mathcal{H})) \cong\{0,1,2, \ldots\}$ and

$$
\left.K_{0}\left(M_{n}(\mathbb{C})\right) \cong \mathbb{Z} \quad \text { and } \quad K_{0}(\mathcal{K}(\mathcal{H}))\right) \cong \mathbb{Z} .
$$

Examples of K_{0}

$\mathbb{C}, M_{n}(\mathbb{C})$, and $\mathcal{K}(\mathcal{H})$
Projections in $M_{\infty}(\mathbb{C})$ are finite rank, so $V(\mathbb{C}) \cong\{0,1,2, \ldots\}$ and

$$
K_{0}(\mathbb{C}) \cong \mathbb{Z}
$$

Likewise, $M_{\infty}\left(M_{n}(\mathbb{C})\right)=M_{\infty}(\mathbb{C})$, and projections in $\mathcal{K}(\mathcal{H})$ and $M_{\infty}(\mathcal{K}(\mathcal{H}))$ are finite rank, so $V\left(M_{n}(\mathbb{C})\right) \cong V(\mathcal{K}(\mathcal{H})) \cong\{0,1,2, \ldots\}$ and

$$
\left.K_{0}\left(M_{n}(\mathbb{C})\right) \cong \mathbb{Z} \quad \text { and } \quad K_{0}(\mathcal{K}(\mathcal{H}))\right) \cong \mathbb{Z}
$$

$B(\mathcal{H})$
In $M_{\infty}(B(\mathcal{H})) \cong B(\mathcal{H})$ all projections are either finite rank or have countably infinite rank. So $V(B(\mathcal{H})) \cong\{0,1,2, \ldots\} \cup\{\infty\}$ and

$$
\left.K_{0}(B(\mathcal{H}))\right) \cong\{0\} .
$$

Examples of K_{0}

$\mathbb{C}, M_{n}(\mathbb{C})$, and $\mathcal{K}(\mathcal{H})$
Projections in $M_{\infty}(\mathbb{C})$ are finite rank, so $V(\mathbb{C}) \cong\{0,1,2, \ldots\}$ and

$$
K_{0}(\mathbb{C}) \cong \mathbb{Z}
$$

Likewise, $M_{\infty}\left(M_{n}(\mathbb{C})\right)=M_{\infty}(\mathbb{C})$, and projections in $\mathcal{K}(\mathcal{H})$ and $M_{\infty}(\mathcal{K}(\mathcal{H}))$ are finite rank, so $V\left(M_{n}(\mathbb{C})\right) \cong V(\mathcal{K}(\mathcal{H})) \cong\{0,1,2, \ldots\}$ and

$$
\left.K_{0}\left(M_{n}(\mathbb{C})\right) \cong \mathbb{Z} \quad \text { and } \quad K_{0}(\mathcal{K}(\mathcal{H}))\right) \cong \mathbb{Z}
$$

$B(\mathcal{H})$
In $M_{\infty}(B(\mathcal{H})) \cong B(\mathcal{H})$ all projections are either finite rank or have countably infinite rank. So $V(B(\mathcal{H})) \cong\{0,1,2, \ldots\} \cup\{\infty\}$ and

$$
\left.K_{0}(B(\mathcal{H}))\right) \cong\{0\} .
$$

$\mathcal{C}(\mathcal{H}):=B(\mathcal{H}) / \mathcal{K}(\mathcal{H})$
In $\mathcal{C}(\mathcal{H})$ and $M_{\infty}(\mathcal{C}(\mathcal{H}))$ all finite-rank projections are equivalent, so
$V(\mathcal{C}(\mathcal{H}))=\{0, \infty\}$ and

$$
K_{0}(\mathcal{C}(\mathcal{H})) \cong\{0\} .
$$

A Note on Equivalence in the K_{0}-group

Let p and q be projections in A. We say p and q are . . .

Murray-von Neumann equivalent, denoted $p \sim q$ if there exists $v \in A$ with $p=v v^{*}$ and $q=v^{*} v$.
unitarily equivalent, denoted $p \sim_{u} q$, if there exists unitary $u \in A^{1}$ with $p=u^{*} q u$.
homotopic, denoted $p \sim_{h} q$, when p and q are connected by a norm-continuous path of projections in A.

A Note on Equivalence in the K_{0}-group

Let p and q be projections in A. We say p and q are . . .

Murray-von Neumann equivalent, denoted $p \sim q$ if there exists $v \in A$ with $p=v v^{*}$ and $q=v^{*} v$.
unitarily equivalent, denoted $p \sim_{u} q$, if there exists unitary $u \in A^{1}$ with $p=u^{*} q u$.
homotopic, denoted $p \sim_{h} q$, when p and q are connected by a norm-continuous path of projections in A.

Facts:
$p \sim_{h} q \Longrightarrow p \sim_{u} q \Longrightarrow p \sim q$
$p \sim q \Longrightarrow\left(\begin{array}{ll}p & 0 \\ 0 & 0\end{array}\right) \sim_{u}\left(\begin{array}{ll}q & 0 \\ 0 & 0\end{array}\right) \quad$ and $\quad p \sim_{u} q \Longrightarrow\left(\begin{array}{ll}p & 0 \\ 0 & 0\end{array}\right) \sim_{h}\left(\begin{array}{ll}q & 0 \\ 0 & 0\end{array}\right)$

A Note on Equivalence in the K_{0}-group

Let p and q be projections in A. We say p and q are . . .
Murray-von Neumann equivalent, denoted $p \sim q$ if there exists $v \in A$ with $p=v v^{*}$ and $q=v^{*} v$.
unitarily equivalent, denoted $p \sim_{u} q$, if there exists unitary $u \in A^{1}$ with $p=u^{*} q u$.
homotopic, denoted $p \sim_{h} q$, when p and q are connected by a norm-continuous path of projections in A.

Facts:
$p \sim_{h} q \Longrightarrow p \sim_{u} q \Longrightarrow p \sim q$
$p \sim q \Longrightarrow\left(\begin{array}{ll}p & 0 \\ 0 & 0\end{array}\right) \sim_{u}\left(\begin{array}{ll}q & 0 \\ 0 & 0\end{array}\right) \quad$ and $\quad p \sim_{u} q \Longrightarrow\left(\begin{array}{ll}p & 0 \\ 0 & 0\end{array}\right) \sim_{h}\left(\begin{array}{ll}q & 0 \\ 0 & 0\end{array}\right)$
So in $M_{\infty}(A)$ (and hence in $K_{0}(A)$) the Murray-von Neumann equivalence classes, unitary equivalence classes, and homotopy equivalence classes coincide.

The Higher K-groups

In topology, the suspension of a topological space X is intuitively obtained by stretching X into a cylinder and then collapsing both end faces to points. One views X as "suspended" between these end points.

The Higher K-groups

In topology, the suspension of a topological space X is intuitively obtained by stretching X into a cylinder and then collapsing both end faces to points. One views X as "suspended" between these end points.

The noncommutative version: If A is a C^{*}-algebra,

$$
S A:=\{f \in C([0,1], A): f(0)=f(1)=0\} .
$$

Equivalent descriptions:

$$
S A \cong C_{0}((0,1), A) \cong C_{0}(\mathbb{R}, A) \cong\{f \in C(\mathbb{T}, A): f(1)=0\}
$$

The Higher K-groups

Higher K-groups are defined inductively. Given $K_{0}(A)$, we define

$$
K_{n+1}(A):=K_{n}(S A) \quad \text { for } n=0,1,2, \ldots
$$

So inductively we obtain $K_{n}(A):=K_{0}\left(S^{n} A\right)$.

The Higher K-groups

Higher K-groups are defined inductively. Given $K_{0}(A)$, we define

$$
K_{n+1}(A):=K_{n}(S A) \quad \text { for } n=0,1,2, \ldots
$$

So inductively we obtain $K_{n}(A):=K_{0}\left(S^{n} A\right)$.

Although the K_{1}-group is defined as $K_{1}(A):=K_{0}(S A)$, we can also obtain a description in terms of unitaries . . .

The K_{1}-group
Define

$$
A^{+}:= \begin{cases}A^{1} & \text { if } A \text { is nonunital } \\ A & \text { if } A \text { is unital. }\end{cases}
$$

The K_{1}-group

Define

$$
A^{+}:= \begin{cases}A^{1} & \text { if } A \text { is nonunital } \\ A & \text { if } A \text { is unital. }\end{cases}
$$

Let $U_{n}\left(A^{+}\right)$denote set of unitariies in $M_{n}\left(A^{+}\right)$. We can embed $U_{n}\left(A^{+}\right)$in $U_{n+1}\left(A^{+}\right)$by $x \mapsto\left(\begin{array}{cc}x & 0 \\ 0 & 1\end{array}\right)$, and we define $U_{\infty}\left(A^{+}\right):=\bigcup_{n=1}^{\infty} U_{n}\left(A^{+}\right)$.

The K_{1}-group

Define

$$
A^{+}:= \begin{cases}A^{1} & \text { if } A \text { is nonunital } \\ A & \text { if } A \text { is unital. }\end{cases}
$$

Let $U_{n}\left(A^{+}\right)$denote set of unitariies in $M_{n}\left(A^{+}\right)$. We can embed $U_{n}\left(A^{+}\right)$in $U_{n+1}\left(A^{+}\right)$by $x \mapsto\left(\begin{array}{cc}x & 0 \\ 0 & 1\end{array}\right)$, and we define $U_{\infty}\left(A^{+}\right):=\bigcup_{n=1}^{\infty} U_{n}\left(A^{+}\right)$. We say $u, v \in U_{n}\left(A^{+}\right)$are homotopic if there is a norm-continuous path $\gamma:[0,1] \rightarrow U_{n}\left(A^{+}\right)$with $\phi(0)=u$ and $\phi(1)=v$.

The K_{1}-group

Define

$$
A^{+}:= \begin{cases}A^{1} & \text { if } A \text { is nonunital } \\ A & \text { if } A \text { is unital. }\end{cases}
$$

Let $U_{n}\left(A^{+}\right)$denote set of unitariies in $M_{n}\left(A^{+}\right)$. We can embed $U_{n}\left(A^{+}\right)$in $U_{n+1}\left(A^{+}\right)$by $x \mapsto\left(\begin{array}{cc}x & 0 \\ 0 & 1\end{array}\right)$, and we define $U_{\infty}\left(A^{+}\right):=\bigcup_{n=1}^{\infty} U_{n}\left(A^{+}\right)$. We say $u, v \in U_{n}\left(A^{+}\right)$are homotopic if there is a norm-continuous path $\gamma:[0,1] \rightarrow U_{n}\left(A^{+}\right)$with $\phi(0)=u$ and $\phi(1)=v$.
Given $u, v \in U_{\infty}\left(A^{+}\right)$with $u \in U_{n}\left(A^{+}\right)$and $v \in U_{m}\left(A^{+}\right)$, we define $u \sim_{h} v$ if $\exists k \geq \max \{m, n\}$ s.t. $\left(\begin{array}{cc}u & 0 \\ 0 & 1_{k-n}\end{array}\right)$ and $\left(\begin{array}{cc}v & 0 \\ 0 & 1_{k-m}\end{array}\right)$ are homotopic.

The K_{1}-group

Define

$$
A^{+}:= \begin{cases}A^{1} & \text { if } A \text { is nonunital } \\ A & \text { if } A \text { is unital. }\end{cases}
$$

Let $U_{n}\left(A^{+}\right)$denote set of unitariies in $M_{n}\left(A^{+}\right)$. We can embed $U_{n}\left(A^{+}\right)$in $U_{n+1}\left(A^{+}\right)$by $x \mapsto\left(\begin{array}{cc}x \\ 0 & 0\end{array}\right)$, and we define $U_{\infty}\left(A^{+}\right):=\bigcup_{n=1}^{\infty} U_{n}\left(A^{+}\right)$. We say $u, v \in U_{n}\left(A^{+}\right)$are homotopic if there is a norm-continuous path $\gamma:[0,1] \rightarrow U_{n}\left(A^{+}\right)$with $\phi(0)=u$ and $\phi(1)=v$.
Given $u, v \in U_{\infty}\left(A^{+}\right)$with $u \in U_{n}\left(A^{+}\right)$and $v \in U_{m}\left(A^{+}\right)$, we define $u \sim_{h} v$ if $\exists k \geq \max \{m, n\}$ s.t. $\left(\begin{array}{cc}\breve{L} & 0 \\ 0 & 1_{k-n}\end{array}\right)$ and $\left(\begin{array}{cc}\vee & 0 \\ 0 & 1_{k-m}\end{array}\right)$ are homotopic. We define

$$
K_{1}(A):=U_{\infty}\left(A^{+}\right) / \sim_{h} \quad \text { with } \quad[u]_{h}+[v]_{h}:=\left[\binom{\binom{0}{0}}{0}\right]_{h}
$$

The K_{1}-group

Define

$$
A^{+}:= \begin{cases}A^{1} & \text { if } A \text { is nonunital } \\ A & \text { if } A \text { is unital. }\end{cases}
$$

Let $U_{n}\left(A^{+}\right)$denote set of unitariies in $M_{n}\left(A^{+}\right)$. We can embed $U_{n}\left(A^{+}\right)$in $U_{n+1}\left(A^{+}\right)$by $x \mapsto\left(\begin{array}{cc}x \\ 0 & 0\end{array}\right)$, and we define $U_{\infty}\left(A^{+}\right):=\bigcup_{n=1}^{\infty} U_{n}\left(A^{+}\right)$. We say $u, v \in U_{n}\left(A^{+}\right)$are homotopic if there is a norm-continuous path $\gamma:[0,1] \rightarrow U_{n}\left(A^{+}\right)$with $\phi(0)=u$ and $\phi(1)=v$.
Given $u, v \in U_{\infty}\left(A^{+}\right)$with $u \in U_{n}\left(A^{+}\right)$and $v \in U_{m}\left(A^{+}\right)$, we define $u \sim_{h} v$ if $\exists k \geq \max \{m, n\}$ s.t. $\left(\begin{array}{ll}\breve{L} & 0 \\ 0 & 0 \\ 1_{-n}\end{array}\right)$ and $\left(\begin{array}{cc}v & 0 \\ 0 & 1_{k-m}\end{array}\right)$ are homotopic. We define

$$
K_{1}(A):=U_{\infty}\left(A^{+}\right) / \sim_{h} \quad \text { with } \quad[u]_{h}+[v]_{h}:=\left[\left(\begin{array}{cc}
\left.\left(\begin{array}{ll}
0 \\
0 & 0
\end{array}\right)\right]_{h}
\end{array}\right.\right.
$$

Fact: $K_{1}(A)$ is an abelian group; moreover $-[u]_{h}=\left[u^{*}\right]_{h}$.
K_{1} is a functor: If $\phi: A \rightarrow B$, it extends to $\widetilde{\phi}: M_{\infty}\left(A^{+}\right) \rightarrow M_{\infty}\left(B^{+}\right)$and we define $\phi_{1}: K_{1}(A) \rightarrow K_{1}(B)$ by $\phi_{1}\left([u]_{h}\right)=[\widetilde{\phi}(u)]_{h}$

Examples of K_{1}

The K_{1}-group is a bit harder to compute at this stage. But with some work, one can prove that all unitaries in $U_{\infty}(\mathbb{C})$ and $U_{\infty}(B(\mathcal{H}))$ are homotopic, giving

$$
K_{1}(\mathbb{C}) \cong K_{1}\left(M_{n}(\mathbb{C})\right) \cong K_{1}(\mathcal{K}(\mathcal{H})) \cong K_{1}(B(\mathcal{H})) \cong\{0\} .
$$

Examples of K_{1}

The K_{1}-group is a bit harder to compute at this stage. But with some work, one can prove that all unitaries in $U_{\infty}(\mathbb{C})$ and $U_{\infty}(B(\mathcal{H}))$ are homotopic, giving

$$
K_{1}(\mathbb{C}) \cong K_{1}\left(M_{n}(\mathbb{C})\right) \cong K_{1}(\mathcal{K}(\mathcal{H})) \cong K_{1}(B(\mathcal{H})) \cong\{0\} .
$$

We'll show some tricks for computing more K_{1}-groups later.

The Index Maps

At this point we have our functors K_{n}, but to obtain a homology we also need connecting maps (sometimes called index maps); i.e., for each C^{*}-algebra A and each ideal I of A, we need to construct a map

$$
\delta_{n}: K_{n}(A / I) \rightarrow K_{n+1}(I) \quad \text { for each } n=0,1, \ldots
$$

The Index Maps

At this point we have our functors K_{n}, but to obtain a homology we also need connecting maps (sometimes called index maps); i.e., for each C^{*}-algebra A and each ideal I of A, we need to construct a map

$$
\delta_{n}: K_{n}(A / I) \rightarrow K_{n+1}(I) \quad \text { for each } n=0,1, \ldots
$$

I'll spare you the details, but the index maps do exist. Moreover, it can be proven that each is unique up to sign, so despite what may seem to be a complicated or unmotivated construction, we are assured we have obtained the correct map in the end.

The Index Maps

At this point we have our functors K_{n}, but to obtain a homology we also need connecting maps (sometimes called index maps); i.e., for each C^{*}-algebra A and each ideal I of A, we need to construct a map

$$
\delta_{n}: K_{n}(A / I) \rightarrow K_{n+1}(I) \quad \text { for each } n=0,1, \ldots
$$

I'll spare you the details, but the index maps do exist. Moreover, it can be proven that each is unique up to sign, so despite what may seem to be a complicated or unmotivated construction, we are assured we have obtained the correct map in the end.
Thus for any ideal I in A, we map apply K-theory to the short exact sequence $0 \rightarrow I \rightarrow A \rightarrow A / I \rightarrow 0$ to obtain a long exact sequence

$$
K_{0}(I) \longrightarrow K_{0}(A) \longrightarrow K_{0}(A / I) \xrightarrow{\delta_{0}} K_{1}(I) \longrightarrow K_{1}(A) \longrightarrow K_{1}(A / I) \xrightarrow{\delta_{1}} \ldots
$$

The Index Maps

At this point we have our functors K_{n}, but to obtain a homology we also need connecting maps (sometimes called index maps); i.e., for each C^{*}-algebra A and each ideal I of A, we need to construct a map

$$
\delta_{n}: K_{n}(A / I) \rightarrow K_{n+1}(I) \quad \text { for each } n=0,1, \ldots
$$

I'll spare you the details, but the index maps do exist. Moreover, it can be proven that each is unique up to sign, so despite what may seem to be a complicated or unmotivated construction, we are assured we have obtained the correct map in the end.
Thus for any ideal I in A, we map apply K-theory to the short exact sequence $0 \rightarrow I \rightarrow A \rightarrow A / I \rightarrow 0$ to obtain a long exact sequence

$$
K_{0}(I) \longrightarrow K_{0}(A) \longrightarrow K_{0}(A / I) \xrightarrow{\delta_{0}} K_{1}(I) \longrightarrow K_{1}(A) \longrightarrow K_{1}(A / I) \xrightarrow{\delta_{1}} \ldots
$$

In addition, a truly remarkable fact emerges during the construction of the index maps . . .

Bott Periodicity

It turns out that $K_{0}(A) \cong K_{2}(A)$ for any C^{*}-algebra A. (Wow!)

Bott Periodicity

It turns out that $K_{0}(A) \cong K_{2}(A)$ for any C^{*}-algebra A. (Wow!)

This implies all the higher K-groups after K_{1} are redundant. For instance,

$$
K_{3}(A):=K_{2}(S A) \cong K_{0}(S A)=K_{1}(A)
$$

Bott Periodicity

It turns out that $K_{0}(A) \cong K_{2}(A)$ for any C^{*}-algebra A. (Wow!)

This implies all the higher K-groups after K_{1} are redundant. For instance,

$$
K_{3}(A):=K_{2}(S A) \cong K_{0}(S A)=K_{1}(A)
$$

Inductively, we obtain
and

$$
\begin{aligned}
K_{0}(A) \cong K_{2}(A) \cong K_{4}(A) \cong K_{6}(A) \cong \ldots \\
K_{1}(A) \cong K_{3}(A) \cong K_{5}(A) \cong K_{7}(A) \cong \ldots
\end{aligned}
$$

Thus there are really only two distinct K-groups: $K_{0}(A)$ and $K_{1}(A)$.

Bott Periodicity

It turns out that $K_{0}(A) \cong K_{2}(A)$ for any C^{*}-algebra A. (Wow!)

This implies all the higher K-groups after K_{1} are redundant. For instance,

$$
K_{3}(A):=K_{2}(S A) \cong K_{0}(S A)=K_{1}(A)
$$

Inductively, we obtain
and

$$
\begin{aligned}
K_{0}(A) \cong K_{2}(A) \cong K_{4}(A) \cong K_{6}(A) \cong \ldots \\
K_{1}(A) \cong K_{3}(A) \cong K_{5}(A) \cong K_{7}(A) \cong \ldots
\end{aligned}
$$

Thus there are really only two distinct K-groups: $K_{0}(A)$ and $K_{1}(A)$.
Also, since the K_{0}-group and the K_{2}-group of any C^{*}-algebra agree, for any short exact sequence $0 \rightarrow I \rightarrow A \rightarrow A / I \rightarrow 0$, the corresponding long exact sequence

$$
K_{0}(I) \longrightarrow K_{0}(A) \longrightarrow K_{0}(A / I) \xrightarrow{\delta_{0}} K_{1}(I) \longrightarrow K_{1}(A) \longrightarrow K_{1}(A / I) \xrightarrow{\delta_{1}} \ldots
$$

wraps around on itself.

Theorem (The Cyclic 6-term Exact Sequence)

For any C^{*}-algebra A and any ideal I of A, applying K-theory to the short exact sequence

$$
0 \longrightarrow I \xrightarrow{i} A \xrightarrow{\pi} A / I \longrightarrow 0
$$

yields the cyclic 6-term exact sequence

$$
\begin{gathered}
\underset{K_{0}(I)}{\stackrel{i_{0}}{\longrightarrow}} K_{0}(A) \stackrel{\pi_{0}}{\longleftrightarrow} K_{0}(A / I) \\
\delta_{1} \uparrow \\
K_{1}(A / I) \stackrel{\delta_{0}}{\leftrightarrows} K_{1}(A) \stackrel{i_{0}}{\leftrightarrows} K_{1}(I)
\end{gathered}
$$

Topological K-theory also has Bott periodicity of period 2. Algebraic K-theory does not have Bott periodicity.

Fun Fact: If you work over \mathbb{R} instead of \mathbb{C} in Topological or Operator K-theory, you get period 8 and a cyclic 24 -term exact sequence.

The 6 -term exact sequence can be useful for computing K-groups.

The 6 -term exact sequence can be useful for computing K-groups. Example: We know the K-groups for $\mathcal{K}(\mathcal{H})$ and $B(\mathcal{H})$. We can use them to calculate the K-groups of the Calkin algebra $\mathcal{C}(\mathcal{H}):=B(\mathcal{H}) / \mathcal{K}(\mathcal{H})$.

The 6 -term exact sequence can be useful for computing K-groups. Example: We know the K-groups for $\mathcal{K}(\mathcal{H})$ and $B(\mathcal{H})$. We can use them to calculate the K-groups of the Calkin algebra $\mathcal{C}(\mathcal{H}):=B(\mathcal{H}) / \mathcal{K}(\mathcal{H})$. Applying K-theory to $0 \rightarrow \mathcal{K}(\mathcal{H}) \rightarrow B(\mathcal{H}) \rightarrow \mathcal{C}(\mathcal{H}) \rightarrow 0$ we get

The 6 -term exact sequence can be useful for computing K-groups.
Example: We know the K-groups for $\mathcal{K}(\mathcal{H})$ and $B(\mathcal{H})$. We can use them to calculate the K-groups of the Calkin algebra $\mathcal{C}(\mathcal{H}):=B(\mathcal{H}) / \mathcal{K}(\mathcal{H})$. Applying K-theory to $0 \rightarrow \mathcal{K}(\mathcal{H}) \rightarrow B(\mathcal{H}) \rightarrow \mathcal{C}(\mathcal{H}) \rightarrow 0$ we get

Substituting known values yields

The 6 -term exact sequence can be useful for computing K-groups.
Example: We know the K-groups for $\mathcal{K}(\mathcal{H})$ and $B(\mathcal{H})$. We can use them to calculate the K-groups of the Calkin algebra $\mathcal{C}(\mathcal{H}):=B(\mathcal{H}) / \mathcal{K}(\mathcal{H})$. Applying K-theory to $0 \rightarrow \mathcal{K}(\mathcal{H}) \rightarrow B(\mathcal{H}) \rightarrow \mathcal{C}(\mathcal{H}) \rightarrow 0$ we get

Substituting known values yields

So $K_{1}(\mathcal{C}(\mathcal{H})) \cong \mathbb{Z}$ and $K_{0}(\mathcal{C}(\mathcal{H})) \cong\{0\}$.

A covariant functor F from \mathbf{C}^{*} to $\mathbf{A b G p}$ is . . .

- Half Exact when every short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is taken to an exact sequence $F A \rightarrow F B \rightarrow F C$.
- Homotopy Invariant If $\alpha: A \rightarrow B$ and $\beta: A \rightarrow B$ are homotopic (i.e., there exists a path of morphisms $\gamma_{t}: A \rightarrow B, t \in[0,1]$ such that $t \mapsto \gamma_{t}(a)$ is norm continuous for all $a \in A$ and with $\gamma_{0}=\alpha$ and $\gamma_{1}=\beta$), then $\alpha_{*}=\beta_{*}$.
- Stable For any C^{*}-algebra A and any rank 1 projection $p \in \mathcal{K}(\mathcal{H})$, the morphism $a \mapsto a \otimes p$ from A to $A \otimes \mathcal{K}(\mathcal{H})$ induces an isomorphism from $F(A)$ onto $F(A \otimes \mathcal{K}(\mathcal{H}))$.
- Continuous if whenever $\left\{A_{n}, \phi_{n}\right\}_{n=1}^{\infty}$ is a countable directed sequence, then $F\left(\underset{\longrightarrow}{\lim }\left(A_{n}, \phi_{n}\right)\right)=\underset{\longrightarrow}{\lim }\left(F\left(A_{n}\right), \phi_{n *}\right)$

A covariant functor F from \mathbf{C}^{*} to $\mathbf{A b G p}$ is . .

- Half Exact when every short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is taken to an exact sequence $F A \rightarrow F B \rightarrow F C$.
- Homotopy Invariant If $\alpha: A \rightarrow B$ and $\beta: A \rightarrow B$ are homotopic (i.e., there exists a path of morphisms $\gamma_{t}: A \rightarrow B, t \in[0,1]$ such that $t \mapsto \gamma_{t}(a)$ is norm continuous for all $a \in A$ and with $\gamma_{0}=\alpha$ and $\gamma_{1}=\beta$), then $\alpha_{*}=\beta_{*}$.
- Stable For any C^{*}-algebra A and any rank 1 projection $p \in \mathcal{K}(\mathcal{H})$, the morphism $a \mapsto a \otimes p$ from A to $A \otimes \mathcal{K}(\mathcal{H})$ induces an isomorphism from $F(A)$ onto $F(A \otimes \mathcal{K}(\mathcal{H}))$.
- Continuous if whenever $\left\{A_{n}, \phi_{n}\right\}_{n=1}^{\infty}$ is a countable directed sequence, then $F\left(\underset{\longrightarrow}{\lim }\left(A_{n}, \phi_{n}\right)\right)=\underset{\longrightarrow}{\lim }\left(F\left(A_{n}\right), \phi_{n *}\right)$
K_{0} and K_{1} are half exact, homotopy invariant, stable, and continuous.

A covariant functor F from \mathbf{C}^{*} to $\mathbf{A b G p}$ is . . .

- Half Exact when every short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is taken to an exact sequence $F A \rightarrow F B \rightarrow F C$.
- Homotopy Invariant If $\alpha: A \rightarrow B$ and $\beta: A \rightarrow B$ are homotopic (i.e., there exists a path of morphisms $\gamma_{t}: A \rightarrow B, t \in[0,1]$ such that $t \mapsto \gamma_{t}(a)$ is norm continuous for all $a \in A$ and with $\gamma_{0}=\alpha$ and $\gamma_{1}=\beta$), then $\alpha_{*}=\beta_{*}$.
- Stable For any C^{*}-algebra A and any rank 1 projection $p \in \mathcal{K}(\mathcal{H})$, the morphism $a \mapsto a \otimes p$ from A to $A \otimes \mathcal{K}(\mathcal{H})$ induces an isomorphism from $F(A)$ onto $F(A \otimes \mathcal{K}(\mathcal{H}))$.
- Continuous if whenever $\left\{A_{n}, \phi_{n}\right\}_{n=1}^{\infty}$ is a countable directed sequence, then $F\left(\underset{\longrightarrow}{\lim }\left(A_{n}, \phi_{n}\right)\right)=\underset{\longrightarrow}{\lim }\left(F\left(A_{n}\right), \phi_{n *}\right)$
K_{0} and K_{1} are half exact, homotopy invariant, stable, and continuous.
Theorem: If F is a functor that is half exact, homotopy invariant, stable, and continuous with $F(\mathbb{C})=\mathbb{Z}$ and $F(S \mathbb{C})=0$ then F is K_{0}.
Theorem: If F is a functor that is half exact, homotopy invariant, stable, and continuous with $F(\mathbb{C})=0$ and $F(S \mathbb{C})=\mathbb{Z}$ then F is K_{1}.

Other K-theory Results

Other K-theory Results

Direct Sums: If A and B are C^{*}-algebras, then

$$
K_{0}(A \oplus B) \cong K_{0}(A) \oplus K_{0}(B) \quad \text { and } \quad K_{1}(A \oplus B) \cong K_{1}(A) \oplus K_{1}(B)
$$

Other K-theory Results

Direct Sums: If A and B are C^{*}-algebras, then

$$
K_{0}(A \oplus B) \cong K_{0}(A) \oplus K_{0}(B) \quad \text { and } \quad K_{1}(A \oplus B) \cong K_{1}(A) \oplus K_{1}(B)
$$

Split exact sequences: If we have a split exact sequence

$$
0 \longrightarrow I \xrightarrow{i} A \stackrel{s}{\stackrel{s}{\leftrightarrows}} A / I \longrightarrow 0
$$

then K_{0} an K_{1} each take it to a split exact sequence

$$
0 \longrightarrow K_{0}(I) \xrightarrow{i_{0}} K_{0}(A) \stackrel{\stackrel{s_{0}}{\pi_{0}}}{K_{0}}(A / I) \longrightarrow K_{1}(I) \xrightarrow{i_{1}} K_{1}(A) \stackrel{s_{1}}{\stackrel{s_{1}}{\leftrightarrows}} K_{1}(A / I) \longrightarrow 0
$$

Other K-theory Results

Direct Sums: If A and B are C^{*}-algebras, then

$$
K_{0}(A \oplus B) \cong K_{0}(A) \oplus K_{0}(B) \quad \text { and } \quad K_{1}(A \oplus B) \cong K_{1}(A) \oplus K_{1}(B)
$$

Split exact sequences: If we have a split exact sequence

$$
0 \longrightarrow I \xrightarrow{i} A \stackrel{s}{\leftrightarrows} A / I \longrightarrow 0
$$

then K_{0} an K_{1} each take it to a split exact sequence

$$
0 \longrightarrow K_{0}(I) \xrightarrow{i_{0}} K_{0}(A) \stackrel{s_{0}}{\stackrel{s_{0}}{\longrightarrow}} K_{0}(A / I) \longrightarrow 0 \quad K_{1}(I) \xrightarrow{i_{1}} K_{1}(A) \stackrel{s_{1}}{\stackrel{s_{1}}{\leftrightarrows}} K_{1}(A / I) \longrightarrow 0
$$

Tensor Products: The Künneth Theorem says that if A and B are nuclear and their K-groups are all torsion free, then

$$
\begin{aligned}
& K_{0}(A \otimes B) \cong\left(K_{0}(A) \otimes K_{0}(B)\right) \oplus\left(K_{1}(A) \otimes K_{1}(B)\right) \\
& K_{1}(A \otimes B) \cong\left(K_{0}(A) \otimes K_{1}(B)\right) \oplus\left(K_{1}(A) \otimes K_{0}(B)\right)
\end{aligned}
$$

Pimsner-Voiculescu Exact Sequence for crossed products by \mathbb{Z} If A is a unital C^{*}-algebra and α is a $*$-automorphism of A, we may form the crossed product $A \times{ }_{\alpha} \mathbb{Z}$. If we let $i: A \hookrightarrow A \times{ }_{\alpha} \mathbb{Z}$ denote the natural embedding, then there is an exact sequence

Note: This 6-term sequence does not come from a short exact sequence.

Pimsner-Voiculescu Exact Sequence for crossed products by \mathbb{Z} If A is a unital C^{*}-algebra and α is a $*$-automorphism of A, we may form the crossed product $A \times{ }_{\alpha} \mathbb{Z}$. If we let $i: A \hookrightarrow A \times{ }_{\alpha} \mathbb{Z}$ denote the natural embedding, then there is an exact sequence

Note: This 6-term sequence does not come from a short exact sequence.
Application: If A is an $n \times n$ matrix and \mathcal{O}_{A} is the associated Cuntz-Krieger algebra, (a dual version of) the above sequence can be used to obtain

So $\quad K_{0}\left(\mathcal{O}_{A}\right) \cong \operatorname{coker}\left(I-A^{t}\right) \quad$ and $\quad K_{1}\left(\mathcal{O}_{A}\right) \cong \operatorname{ker}\left(I-A^{t}\right)$.

Relation with Topological K-theory

If X is a compact Hausdorff space, the $n^{\text {th }}$ topological K-group of X is isomorphic to $K_{n}(C(X))$.

AF-algebras
If A is an AF-algebra, $A=\underset{\longrightarrow}{\lim }\left(A_{n}, \phi_{n}\right)$, with each A_{n} finite-dimensional. Thus each A_{n} is a direct sum of matrix algebras, and by the continuity of K-theory and the fact K-theory distributes over direct sums

$$
\left.K_{0}(A)=\underset{\longrightarrow}{\lim }\left(K_{0}\left(A_{n}\right),\left(i_{n}\right)_{0}\right)=\underset{\longrightarrow}{\lim }\left(K_{0}\left(A_{n}\right),\left(i_{n}\right)_{0}\right)=\lim ^{\lim _{n}},\left(i_{n}\right)_{0}\right)
$$

and

$$
K_{1}(A)=\underset{\longrightarrow}{\lim }\left(K_{1}\left(A_{n}\right),\left(i_{n}\right)_{1}\right)=\underset{\longrightarrow}{\lim }\left(0,\left(i_{n}\right)_{1}\right)=\{0\} .
$$

Therefore, when A is an AF-algebra, $K_{1}(A)=0$. Also, $K_{0}(A)$ is a direct limit of $\mathbb{Z}^{n_{k}}$'s and, in particular, $K_{0}(A)$ has no torsion.

BREAK TIME

Stabilization and Morita Equivalence

A C^{*}-algebra is stable if $A \otimes \mathcal{K}(\mathcal{H}) \cong A$.

Stabilization and Morita Equivalence

A C^{*}-algebra is stable if $A \otimes \mathcal{K}(\mathcal{H}) \cong A$.
For any C^{*}-algebra A, the stabilizaion of A is defined to be $A \otimes \mathcal{K}(\mathcal{H})$. The stabilization $A \otimes \mathcal{K}(\mathcal{H})$ is stable because $\mathcal{K}(\mathcal{H}) \otimes \mathcal{K}(\mathcal{H}) \cong \mathcal{K}(\mathcal{H})$, so

$$
(A \otimes \mathcal{K}(\mathcal{H})) \otimes \mathcal{K}(\mathcal{H}) \cong A \otimes(\mathcal{K}(\mathcal{H}) \otimes \mathcal{K}(\mathcal{H})) \cong A \otimes \mathcal{K}(\mathcal{H}) .
$$

Another way to view the stabilization: Since $\overline{M_{\infty}(\mathbb{C})}=\mathcal{K}(\mathcal{H})$, we have

$$
A \otimes \mathcal{K}(\mathcal{H}) \cong A \otimes \overline{M_{\infty}(\mathbb{C})} \cong \overline{A \otimes M_{\infty}(\mathbb{C})} \cong \overline{M_{\infty}(A)}
$$

We say A and B are stably isomorphic when $A \otimes \mathcal{K}(\mathcal{H}) \cong B \otimes \mathcal{K}(\mathcal{H})$

Theorem: If A and B have countable approximate units (e.g., they are unital or separable), then A and B are Morita equivalent if and only if A and B are stably isomorphic.

K-theory as an Invariant

Our groups K_{0} and K_{1} are stable:

$$
\begin{aligned}
& K_{0}(A) \cong K_{0}\left(M_{n}(A)\right) \cong K_{0}(A \otimes \mathcal{K}(\mathcal{H})) \\
& K_{1}(A) \cong K_{1}\left(M_{n}(A)\right) \cong K_{1}(A \otimes \mathcal{K}(\mathcal{H}))
\end{aligned}
$$

Thus K-theory only "sees" a C^{*}-algebra up to Morita equivalence; i.e., if A and B are Morita equivqlent, then $K_{0}(A) \cong K_{0}(B)$ and $K_{1}(A) \cong K_{1}(B)$. In other words, K-theory is a Morita equivalence invariant.

K-theory as an Invariant

Our groups K_{0} and K_{1} are stable:

$$
\begin{aligned}
& K_{0}(A) \cong K_{0}\left(M_{n}(A)\right) \cong K_{0}(A \otimes \mathcal{K}(\mathcal{H})) \\
& K_{1}(A) \cong K_{1}\left(M_{n}(A)\right) \cong K_{1}(A \otimes \mathcal{K}(\mathcal{H}))
\end{aligned}
$$

Thus K-theory only "sees" a C^{*}-algebra up to Morita equivalence; i.e., if A and B are Morita equivqlent, then $K_{0}(A) \cong K_{0}(B)$ and $K_{1}(A) \cong K_{1}(B)$. In other words, K-theory is a Morita equivalence invariant.

K-theory can therefore be used to show two C^{*}-algebras are "different", where "different" means "not Morita equivalent". For example,

$$
K_{0}\left(\mathcal{O}_{n}\right) \cong \mathbb{Z} / n \mathbb{Z}
$$

Thus the Cuntz algebra \mathcal{O}_{n} is not Morita equivalent to \mathcal{O}_{m} when $n \neq m$.

K-theory as an Invariant

Our groups K_{0} and K_{1} are stable:

$$
\begin{aligned}
& K_{0}(A) \cong K_{0}\left(M_{n}(A)\right) \cong K_{0}(A \otimes \mathcal{K}(\mathcal{H})) \\
& K_{1}(A) \cong K_{1}\left(M_{n}(A)\right) \cong K_{1}(A \otimes \mathcal{K}(\mathcal{H}))
\end{aligned}
$$

Thus K-theory only "sees" a C^{*}-algebra up to Morita equivalence; i.e., if A and B are Morita equivqlent, then $K_{0}(A) \cong K_{0}(B)$ and $K_{1}(A) \cong K_{1}(B)$. In other words, K-theory is a Morita equivalence invariant.

K-theory can therefore be used to show two C^{*}-algebras are "different", where "different" means "not Morita equivalent". For example,

$$
K_{0}\left(\mathcal{O}_{n}\right) \cong \mathbb{Z} / n \mathbb{Z}
$$

Thus the Cuntz algebra \mathcal{O}_{n} is not Morita equivalent to \mathcal{O}_{m} when $n \neq m$.
In some cases, K-theory can also be used to show two C^{*}-algebras are "the same", where "the same" sometimes means "Morita equivalent" and sometimes means "isomorphic". In these situations, we say K-theory is a complete invariant.

Classification of AF-algebras

Let A be an AF-algebra. Recall $K_{1}(A)=0$, so all K-theory info is in the K_{0}-group. Since A has a countable approximate unit of projections,

$$
K_{0}(A)=\left\{[p]-[q]: p, q \in \operatorname{Proj} M_{\infty}(A)\right\} .
$$

We define the positive elements of $K_{0}(A)$ to be

$$
K_{0}(A)^{+}=\left\{[p]: p \in \operatorname{Proj} M_{\infty}(A)\right\}
$$

Defining $a \leq b$ iff $b-a \in K_{0}(A)^{+}$gives a partial ordering on $K_{0}(A)$. We define the scale of $K_{0}(A)$ to be

$$
\Sigma(A)=\{[p]: p \in \operatorname{Proj}(A)\} .
$$

Theorem (Elliott)

Let A and B be $A F$-algebras.
(1) A is Morita equivalent to B iff $\left(K_{0}(A), K_{0}(A)^{+}\right) \cong\left(K_{0}(B), K_{0}(B)^{+}\right)$.
(2) $A \cong B$ iff $\left(K_{0}(A), K_{0}(A)^{+}, \Sigma(A)\right) \cong\left(K_{0}(B), K_{0}(B)^{+}, \Sigma(B)\right)$.

Moreover, when A (respectively, B) is unital, we may replace $\Sigma(A)$ by $\left[1_{A}\right]$ (respectivly, we may replace $\Sigma(B)$ by $\left[1_{B}\right]$).

Classification of Purely Infinite, Simple C^{*}-algebras

Let A be a C^{*}-algebra that is purely infinite and simple. Then $K_{0}(A)=K_{0}(A)^{+}=\left\{[p]: p \in \operatorname{Proj} M_{\infty}(A)\right\}$. If A is also unital, then $K_{0}(A)=\Sigma(A)=\{[p]: p \in \operatorname{Proj}(A)\}$.

Classification of Purely Infinite, Simple C^{*}-algebras

 Let A be a C^{*}-algebra that is purely infinite and simple. Then $K_{0}(A)=K_{0}(A)^{+}=\left\{[p]: p \in \operatorname{Proj} M_{\infty}(A)\right\}$. If A is also unital, then $K_{0}(A)=\Sigma(A)=\{[p]: p \in \operatorname{Proj}(A)\}$.
Theorem (Kirchberg and Phillips)

Let A and B be purely infinite, simple C^{*}-algebras that are also separable and nuclear. ${ }^{1}$
(1) If A and B are nonunital, the following are equivalent:
(a) A is Morita equivalent to B.
(b) A is isomorphic to B.
(c) $K_{0}(A) \cong K_{0}(B)$ and $K_{1}(A) \cong K_{1}(B)$.
(2) If A and B are unital, then
(i) A is Morita equivalent to B iff $K_{0}(A) \cong K_{0}(B)$ and $K_{1}(A) \cong K_{1}(B)$.
(ii) A is isomorphic to B iff $\left(K_{0}(A),\left[1_{A}\right]\right) \cong\left(K_{0}(B),\left[1_{B}\right]\right)$ and $K_{1}(A) \cong K_{1}(B)$.
${ }^{1}$ Technically, we also need A and B to be in the bootstrap class to which the UCT applies, but let's not get into that.

Classification of simple nuclear C^{*}-algebras

Elliott conjectured that all simple, separable, nuclear C^{*}-algebras can be classified up to Morita equivalence by an invariant $\operatorname{ElI}(A)$ that includes the ordered K_{0}-group, the K_{1}-group, and other data provided by K-theory.

\footnotetext{
${ }^{1}$ To be more precise: $(1) \Longleftrightarrow(2)$ has been established and $(1) \Longleftrightarrow$ (2) is known in many cases (e.g., when the trace space of the C^{*}-algebra has finitely many extreme points) but has yet to be proven in general.

Classification of simple nuclear C^{*}-algebras

Elliott conjectured that all simple, separable, nuclear C^{*}-algebras can be classified up to Morita equivalence by an invariant $\operatorname{Ell}(A)$ that includes the ordered K_{0}-group, the K_{1}-group, and other data provided by K-theory.

Counterexamples showed the conjecture is not true for all simple, separable, nuclear C^{*}-algebras - one needs an additional hypothesis, which may be formulated in various ways. TFAE:
(i) A has finite nuclear dimension.
(ii) A is \mathcal{Z}-stable; i.e., $A \cong A \otimes \mathcal{Z}$ where \mathcal{Z} is the Jiang-Su algebra.
(iii) A has strict comparison of positive elements. ${ }^{1}$

[^0] is known in many cases (e.g., when the trace space of the C^{*}-algebra has finitely many extreme points) but has yet to be proven in general.

Classification of simple nuclear C^{*}-algebras

Elliott conjectured that all simple, separable, nuclear C^{*}-algebras can be classified up to Morita equivalence by an invariant $\operatorname{Ell}(A)$ that includes the ordered K_{0}-group, the K_{1}-group, and other data provided by K-theory.

Counterexamples showed the conjecture is not true for all simple, separable, nuclear C^{*}-algebras - one needs an additional hypothesis, which may be formulated in various ways. TFAE:
(i) A has finite nuclear dimension.
(ii) A is \mathcal{Z}-stable; i.e., $A \cong A \otimes \mathcal{Z}$ where \mathcal{Z} is the Jiang-Su algebra.
(iii) A has strict comparison of positive elements. ${ }^{1}$

Theorem (By many hands)

Let A and B be simple, separable, nuclear C^{*}-algebras satisfing one (and hence all) of the above three conditions. Then $A \cong B$ if and only if $\operatorname{Ell}(A) \cong \operatorname{Ell}(B)$.
${ }^{1}$ To be more precise: $(1) \Longleftrightarrow(2)$ has been established and $(1) \Longleftrightarrow(2) \Longleftrightarrow$ (3) is known in many cases (e.g., when the trace space of the C^{*}-algebra has finitely many extreme points) but has yet to be proven in general.

What about non-simple C^{*}-algebras?

What about non-simple C^{*}-algebras?

Elliott's Theorem applies to non-simple AF-algebras. Some progress has also been made for purely infinite C^{*}-algebras.

What about non-simple C^{*}-algebras?

Elliott's Theorem applies to non-simple AF-algebras. Some progress has also been made for purely infinite C^{*}-algebras.

Far-reaching results have also been obtained for graph C^{*}-algebras (which contain the Cuntz-Krieger algebras and the AF-algebras as subclasses).

What about non-simple C^{*}-algebras?

Elliott's Theorem applies to non-simple AF-algebras. Some progress has also been made for purely infinite C^{*}-algebras.

Far-reaching results have also been obtained for graph C^{*}-algebras (which contain the Cuntz-Krieger algebras and the AF-algebras as subclasses).

Theorem (Eilers and T)

Let A be a separable graph C*-algebra with exactly one ideal I. Then A is classified up to Morita equivalence by the 6-term exact sequence

$$
\begin{gathered}
\underset{K_{0}(I)}{\stackrel{i_{0}}{\longrightarrow}} K_{0}(A) \stackrel{\pi_{0}}{\longleftrightarrow} K_{0}(A / I) \\
\delta_{1} \uparrow \\
K_{1}(A / I) \stackrel{\delta_{0}}{\pi_{1}} K_{1}(A) \stackrel{i_{1}}{\longleftrightarrow} K_{1}(I)
\end{gathered}
$$

where the K_{0}-groups in the invariant are considered as ordered groups.

A complete classification up to Morita equivalence has been obtained for C^{*}-algebras of finite graphs.

The invariant, called ordered, filtered K-theory includes the 6-term exact sequences of every ideal and subquotient of A.

A complete classification up to Morita equivalence has been obtained for C^{*}-algebras of finite graphs.

The invariant, called ordered, filtered K-theory includes the 6-term exact sequences of every ideal and subquotient of A.

Theorem (Eilers, Restorff, Ruiz, and Sorensen)
Let A be a separable graph C^{*}-algebra of a finite graph. Then A is classified up to Morita equivalence by its ordered, filtered K-theory.

Generalizations of K-theory

Using extensions, it is possible to create a contravariant theory, called K-homology that assigns groups $K^{0}(A)$ and $K^{1}(A)$ to a C^{*}-algebra A.
$K K$-theory is a bivariant functor that takes a pair of C^{*}-algebra (A, B) and assigns an abelian group $K K(A, B)$.

It turns out that

- $K K(\mathbb{C}, A) \cong K_{0}(A)$

Recall: $S \mathbb{C}=C_{0}(\mathbb{R})$.

- $K K(S \mathbb{C}, A) \cong K_{1}(A)$
- $K K(A, \mathbb{C}) \cong K^{0}(A)$
- $K K(A, S \mathbb{C}) \cong K^{1}(A)$

So $K K$-theory simultaneously generalizes K-theory and K-homology, and can be viewed as a bivariant pairing between the two theories.

There is also a variant of $K K$-theory, known as E-theory, that was developed to get more (and better) exact sequences.

Table of K-groups

A	$K_{0}(A)$	$K_{1}(A)$
\mathbb{C}	\mathbb{Z}	0
M_{n}	\mathbb{Z}	0
\mathbb{K}	\mathbb{Z}	0
\mathbb{B}	0	0
\mathbb{B} / \mathbb{K}	0	\mathbb{Z}
$\left.C_{0} \mathbb{R}^{2 n}\right)$	\mathbb{Z}	0
$C_{0}\left(\mathbb{R}^{2 n+1}\right)$	0	\mathbb{Z}
$C\left(\mathbb{T}^{n}\right)$	$\mathbb{Z}^{2^{n-1}}$	$\mathbb{Z}^{2^{n-1}}$
$C\left(S^{2 n}\right)$	\mathbb{Z}^{2}	0
$C\left(S^{2 n+1}\right)$	\mathbb{Z}	\mathbb{Z}
\mathcal{T}	\mathbb{Z}	0
\mathcal{O}_{n}	$\mathbb{Z} /(n-1)$	0
A_{θ}	\mathbb{Z}^{2}	\mathbb{Z}^{2}
$I_{I_{1} \text {-factor }}$	\mathbb{R}	0

To learn more about K-theory, visit your local library . . .

Introductory Textbooks

- "K-theory and C^{*}-algebras. A friendly approach" by N.E. Wegge-Olsen.
- "An introduction to K-theory for C^{*}-algebras" by M. Rørdam, F. Larsen, and N. Laustsen

Harder Textbook

- "K-theory for operator algebras", Second Edition, by B. Blackadar

A crash course on the K_{0}-group and Elliott's theorem for AF-algebras appears in Sec. III and Sec. IV of Davidson's book.

- "C*-algebras by example" by K. Davidson.

[^0]: ${ }^{1}$ To be more precise: $(1) \Longleftrightarrow(2)$ has been established and $(1) \Longleftrightarrow(2) \Longleftrightarrow$ (3)

