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Preliminaries

A Hilbert space is a vector space H with an inner product (-, -) that is
complete with respect to the norm ||x|| := 1/ (x, x).

B(H):={T :H — H: T is linear and continuous}.
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complete with respect to the norm ||x|| := 1/ (x, x).

B(H):={T :H — H: T is linear and continuous}.

For any T € B(H) there is a unique T* € B(H), called the adjoint, for
which

(T(x),y)={(x, T*(y)) for all x,y € H.
B(H) is a x-algebra. Also:

K(H) :={T € B(H) : T(BallH) compact} = {T € B(H) : rank(T) < oo}.

Fact K(H) < B(H). The Calkin algebra is C(H) := B(H)/K(H).
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Preliminaries

A Hilbert space is a vector space H with an inner product (-, -) that is
complete with respect to the norm ||x|| := /(x, x).
B(H):={T :H — H: T is linear and continuous}.

For any T € B(H) there is a unique T* € B(H), called the adjoint, for
which
(T(x),y) = (x, T*(y)) forall x,y € H.

B(H) is a x-algebra. Also:

K(H) :={T € B(H) : T(BallH) compact} = {T € B(H) : rank(T) < oo}.
Fact K(H) < B(H). The Calkin algebra is C(H) := B(H)/K(H).

A C*-algebra is a closed *-subalgebra of B(H).
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Preliminaries
C*-algebras have a connection with topology . . .

Recall:

C(X):={f: X — C: f is continuous}.
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Theorem: If A is a unital commutative C*-algebra, then A = C(X) for
some compact Hausdorff space X.
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Preliminaries
C*-algebras have a connection with topology . . .

Recall:

C(X):={f: X — C: f is continuous}.

Theorem: If A is a unital commutative C*-algebra, then A = C(X) for
some compact Hausdorff space X.

All topological information of X is encoded as algebraic information in
C(X), So “abelian C*-algebras” are the same as “compact Hausdorff
topological spaces”.

The study of C*-algebras allows one to develop “noncommutative
topology”.
October 14,2020 3 / 46



Question What is K-theory (for Operator Algebras)?
Short Answer: A Homology Theory for C*-algebras.
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Question What is K-theory (for Operator Algebras)?
Short Answer: A Homology Theory for C*-algebras.

Question Why do |, as an operator algebraist, care about K-theory?
Short Answer: It provides some of the most important invariants for
C*-algebras. These invariants allow you to show that particular
C*-algebras are different, ascertain knowledge about the C*-algebra, and
sometimes (perhaps surprisingly often) show two C*-algebras are the same.
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Question Why do |, as an operator algebraist, care about K-theory?
Short Answer: It provides some of the most important invariants for
C*-algebras. These invariants allow you to show that particular
C*-algebras are different, ascertain knowledge about the C*-algebra, and
sometimes (perhaps surprisingly often) show two C*-algebras are the same.

Question: What does the K stand for?
Answer: Grothendieck used the letter K to stand for “Klasse”, which
means “class” in German (Grothendieck 's mother tongue).
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Question What is K-theory (for Operator Algebras)?
Short Answer: A Homology Theory for C*-algebras.

Question Why do |, as an operator algebraist, care about K-theory?
Short Answer: It provides some of the most important invariants for
C*-algebras. These invariants allow you to show that particular
C*-algebras are different, ascertain knowledge about the C*-algebra, and
sometimes (perhaps surprisingly often) show two C*-algebras are the same.

Question: What does the K stand for?
Answer: Grothendieck used the letter K to stand for “Klasse”, which
means “class” in German (Grothendieck 's mother tongue).

Question Where does K-theory (for Operator Algebras) come from?
Short Answer: Algebraic/Differential Topology.

Topological K-theory C Operator K-theory C Algebraic K-theory
(cohomology for (homology for (homology for
compact spaces) C*-algebras) rings)
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What is a homology for C*-algebras?

First, recall that we say a sequence of objects and morphisms

ATt B .,c— .

is exact at B if im f = ker g. We say a sequence is exact if it is exact at all
locations.
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What is a homology for C*-algebras?

First, recall that we say a sequence of objects and morphisms

f B-%.C S

is exact at B if im f = ker g. We say a sequence is exact if it is exact at all
locations.

A

A short exact sequence is an exact sequence of the form

f

0 A B4, 0.

Note that if A, B, and C are C*-algebras, then im f = ker g, f is injective,
g is surjective, A may be identified with an ideal in B, and C = B/A. So
essentially any short exact sequence looks like

0 I~ A—T% A/l 0.

for a C*-algebra A and an ideal / of A.
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What is a homology for C*-algebras?
Motivation: Algebraic Topology
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What is a homology for C*-algebras?
Motivation: Algebraic Topology

To begin, a homology consists of a sequence of covariant functors
H, : C* — AbGp for each n € NU {0}.

Notation for the functor H,:
A ~  Hy(A)
f:A—=B ~ f,:Hy(A) = Hn(B)
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What is a homology for C*-algebras?
Motivation: Algebraic Topology

To begin, a homology consists of a sequence of covariant functors
H, : C* — AbGp for each n € NU {0}.

Notation for the functor H,:
A ~  Hy(A)
f:A—=B ~ f,:Hy(A) — Hn(B)

We require each H, functor to be half-exact: For each n € NU {0},
whenever we have a short exact sequence

0 A-f,p_&,C , 0

we may apply H, to get a sequence
H(A) —" Ho(B) —& H,(C)
that is exact at H,(B). (But typically not at H,(A) or H,(C).)
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What is a homology for C*-algebras?

Thus, when we have a short exact sequence

0— A B ,c— 0

we may apply each H, to get

Ho(A) — Ho(B) —= Ho(C)
Hy(A) —s Hy(B) —& Hy(C)
Ho(A) —2 Hy(B) —& Hy(C)

For each n we require a connecting homomorphism 6, : H,(C) — Hpy1(A)
that makes a long exact sequence when inserted above. Thatis . . .
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What is a homology for C*-algebras?

Ho(B) —) Ho

/

Hl(A) —) Hl(B) —) H1

We usually write this long exact sequence horizontally.

fo o fi o1

Ho(A) Ho(B) —=— Ho(C) Hy(B) —5— Hy(C)

Hi(A)
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What is a homology for C*-algebras?

In topology (when we assign long exact sequences of abelian groups to
topological spaces), one can build the H,-groups in different ways.

However, there is an axiomatization of a “unique” homology. One can
prove that if the Eilenberg-Steenrod Axioms are satisfied, then the
H,-groups you get are the same (at least, on large classes of spaces).
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However, there is an axiomatization of a “unique” homology. One can

prove that if the Eilenberg-Steenrod Axioms are satisfied, then the
H,-groups you get are the same (at least, on large classes of spaces).

In a cohomology one uses contravariant functors, and you “reverse the
arrows” .
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What is a homology for C*-algebras?

In topology (when we assign long exact sequences of abelian groups to
topological spaces), one can build the H,-groups in different ways.

However, there is an axiomatization of a “unique” homology. One can
prove that if the Eilenberg-Steenrod Axioms are satisfied, then the
H,-groups you get are the same (at least, on large classes of spaces).

In a cohomology one uses contravariant functors, and you “reverse the
arrows” .

Our homology for C*-algebras is called K-theory and we'll use the symbol
K, in place of H,, for our functors.

How do we build/define our Kj,-groups? We look to topological K-theory,
which was developed first, for motivation and inspiration.
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Motivation: Topological K-theory

Topological K-theory is a cohomology for compact Hausdorff spaces.

The Big Idea: Fix a compact Hausdorff space X. The 0t K-group for X
is constructed using vector bundles over X, and the other groups are

obtained by “suspending”; i.e., the nt" group is the 0" group of the nth
suspension S"X.
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Motivation: Topological K-theory

Topological K-theory is a cohomology for compact Hausdorff spaces.

The Big Idea: Fix a compact Hausdorff space X. The 0t K-group for X
is constructed using vector bundles over X, and the other groups are
obtained by “suspending”; i.e., the n"" group is the 0" group of the nt"
suspension S"X.

How do we generalize to C*-algebras (and rings)?
Noncommutative topology: We use the following functor

X o~ C(X)

f:X=Y ~ f:C(Y)—=CX)
where f*(g) :=gof

Note: This functor is contravariant.
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Motivation: Topological K-theory

Swan’s Theorem: The category of vector bundles over a compact space X
is equivalent (i.e., isomorphic in the category sense) to the category of
finitely-generated projective modules over C(X).

Finitely-generated: has a finite spanning set.

Projective: A module P is projective if for every surjective module
homomorphism f : N — M and every module homomorphism g : P — M,
there exists a module homomorphism h: P — N such that fo h=g.

N

3

g
—
(This is the definition of projective module, but it is equivalent to a
handful of other properties.)
October 14, 2020 11 / 46



Motivation: Topological K-theory

Topological K-theory for a locally compact space X

0™ group formed using (isomorphism classes of ) Vector Bundles over X.
Higher groups obtained by “suspending”.
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Motivation: Topological K-theory

Topological K-theory for a locally compact space X

0" group formed using (isomorphism classes of ) Vector Bundles over X.
Higher groups obtained by “suspending”.

Operator (resp. Algebraic) K-theory for a C*-algebra (resp. ring) R

0" group formed using (isomorphism classes) of Finitely-Generated
Projective Modules over R.

Higher groups obtained by “suspending”.
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Motivation: Topological K-theory

Let R be a C*-algebra, and let M be a projective module over R.
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Motivation: Topological K-theory
Let R be a C*-algebra, and let M be a projective module over R.
Then M is a direct summand of a free module; i.e., there exists N such

that M @& N is free. If M is finitely generated, this free module can be
chosen of finite rank; i.e., there exists n € N such that

Mao N =R
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Motivation: Topological K-theory

Let R be a C*-algebra, and let M be a projective module over R.

Then M is a direct summand of a free module; i.e., there exists N such
that M @& N is free. If M is finitely generated, this free module can be
chosen of finite rank; i.e., there exists n € N such that

Mao N =R

This means M is a subspace of R". But, as you know, End R" = M,(R),
and we can identify the subspace M with the image of the projection
p € M,(R) onto M.
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Motivation: Topological K-theory

Let R be a C*-algebra, and let M be a projective module over R.

Then M is a direct summand of a free module; i.e., there exists N such
that M @& N is free. If M is finitely generated, this free module can be
chosen of finite rank; i.e., there exists n € N such that

Mao N =R

This means M is a subspace of R". But, as you know, End R" = M,(R),
and we can identify the subspace M with the image of the projection
p € M,(R) onto M.

Q: When will two subspaces of R"” be isomorphic?

A: When there is an isomorphism (i.e., a partial isometry) between them.
If p and g are the associated projections, this occurs iff there exists

v € M,(R) with p = w* and g = v*v. Murray-von Neumann equivalence!

Mark Tomforde Rings and Wings 2020 October 14, 2020 13 / 46



Motivation: Topological K-theory

Topological K-theory for a locally compact space X

0" group formed using (isomorphism classes of ) Vector Bundles over X.
Higher groups obtained by “suspending”.
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0™ group formed using (isomorphism classes) of Finitely-Generated
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Motivation: Topological K-theory

Topological K-theory for a locally compact space X
0" group formed using (isomorphism classes of ) Vector Bundles over X.
Higher groups obtained by “suspending”.

Operator (resp. Algebraic) K-theory for a C*-algebra (resp. ring) R
0" group formed using (isomorphism classes) of Finitely-Generated
Projective Modules over R.

. or equivalently . . .

0th group constructed using Murray-von Neumann equivalence classes of
projections (resp. idempotents) in square matrices over the C*-algebra
(resp. ring).

Higher groups obtained by “suspending”.
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Motivation: Topological K-theory

Topological K-theory for a locally compact space X
0" group formed using (isomorphism classes of ) Vector Bundles over X.
Higher groups obtained by “suspending”.

Operator (resp. Algebraic) K-theory for a C*-algebra (resp. ring) R
0" group formed using (isomorphism classes) of Finitely-Generated
Projective Modules over R.

. or equivalently . . .

0th group constructed using Murray-von Neumann equivalence classes of
projections (resp. idempotents) in square matrices over the C*-algebra
(resp. ring).

Higher groups obtained by “suspending”.

Let’s focus on constructing Ky for C*-algebras and go through details.
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Constructing the Ky-group

Let A be a C*-algebra. If p and g are projections in A, then p+ g may not
be a projection. (It is precisely when p L q.)
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Constructing the Ky-group

Let A be a C*-algebra. If p and g are projections in A, then p+ g may not
be a projection. (It is precisely when p L q.)

However, in M>(A) we can identify p with (57), and we can identify g

with (§0) ~ (0q)-

We can then define a sum
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Constructing the Ky-group

Let A be a C*-algebra. If p and g are projections in A, then p+ g may not
be a projection. (It is precisely when p L q.)

However, in M»(A) we can identify p with (’6 8), and we can identify g

with (§0) ~ (0q)-

We can then define a sum

Likewise for p € M,(A) and g € My (A), we can define

p 0
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The Ky-group for Unital C*-algebras

Let A be a unital C*-algebra. Embed M,(A) in Mp11(A) by x — (53).
Define

Moo (A) = UM(A

Note: M. (A) is the non-closed x-algebra of infinite matrices that have
only finitely many nonzero entries. (Also, My (C) = K(H).)
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The Kp-group for Unital C*-algebras

Let A be a unital C*-algebra. Embed M,(A) in Mp11(A) by x — (53).
Define

Moo (A) - LJM

Note: M. (A) is the non-closed x-algebra of infinite matrices that have
only finitely many nonzero entries. (Also, My (C) = K(H).)
Define

V(A) :=={[p] : p € Proj Ms(A)}

Pl +1al = [(89)].

with
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The Kp-group for Unital C*-algebras

Let A be a unital C*-algebra. Embed M,(A) in Mp11(A) by x — (53).
Define

o0

Moo (A) : U

Note: M (A) is the non-closed x-algebra of infinite matrices that have
only finitely many nonzero entries. (Also, My (C) = K(H).)
Define

V(A) := {[p] : p € Proj Msc(A)}

P+ (a1 = [ (89)]-

(The symbol V is a historical carryover — it stands for "vector bundle”.)
Fact: V/(A) is an abelian semigroup with identity (i.e., an abelian monoid).
We want a group.

with
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The Grothendieck Group of a Semigroup
Let (V,+) be an abelian semigroup with identity.

o = = Q>
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The Grothendieck Group of a Semigroup
Let (V,+) be an abelian semigroup with identity.

Consider a pair (h, k) € V x V and “think of it" representing h — k.
Define an equivalence relation = on V x V by

(h1, ki) = (h2, ko) < 3x € Vsit. hi + ko +x=hy+ ki + x.
Why the x? To get transitivity.
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The Grothendieck Group of a Semigroup
Let (V,+) be an abelian semigroup with identity.

Consider a pair (h, k) € V x V and “think of it" representing h — k.
Define an equivalence relation = on V x V by

(h1, ki) = (h2, ko) < 3x € Vsit. hi + ko +x=hy+ ki + x.
Why the x? To get transitivity.

The Grothendieck Group is the set of equivalence classes

Groth V := {[(h, K)] : b,k € V} w/ [(h, ka)]+[(h2, k)] = [(hr+h2, ki +ko)].
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The Grothendieck Group of a Semigroup
Let (V,+) be an abelian semigroup with identity.

Consider a pair (h, k) € V x V and “think of it" representing h — k.
Define an equivalence relation = on V x V by

(h1, ki) = (h2, ko) < 3x € Vsit. hi + ko +x=hy+ ki + x.
Why the x? To get transitivity.

The Grothendieck Group is the set of equivalence classes
Groth V :={[(h, k)] : h,k € V} w/ [(h1, k1)]+][(h2, k2)] = [(h1+h2, kit+k2)].

We often write [(h, k)] as the formal difference h — k.
But keep in mind: hy — k1 = hp — ky iff dx s.t. hy + ko + x = hy + ki + x.

Groth V is an abelian group and universal for V in the following sense:
We can “include” V — Groth V by h— (h,0), (this isn't always
injective). If G is a group and there is a homomorphism ¢ : V' — G, then
¢ extends to ¢ : Groth V — G by qb(h k) = ¢(h) — o(k).
October 14, 2020 17 / 46



Examples:

Let V ={0,1,2,3,...} with +. Then Groth V = Z.
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Examples:

Let V = {0,1,2,3,...} with +. Then Groth V =~ Z.

Let V ={0,1,2,3,...} U{oo} with +. Then Groth V = 0.
(b/c x+o00=y+ oo forall x,y)
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Examples:

Let V = {0,1,2,3,...} with +. Then Groth V =~ Z.

Let V ={0,1,2,3,...} U{oo} with +. Then Groth V = 0.
(b/c x+o00=y+ oo forall x,y)

Let V = {1,2,3,...} with x. Then Groth V = Q.
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Constructing the Ky-group

Back to Ko(A) . . .

A is a unital C*-algebra.

V(A) = {[p] : p € Proj Mso(A)} with [p] +[a] = [(57)].
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Constructing the Ky-group

Back to Ko(A) . . .

A is a unital C*-algebra.
V(A) = {lp] : p € Proj Mwc(A)} with [p] +[a] = [(£5)] -

We then define

Ko(A) := Groth V(A) = {[p] — [q] : p, g € Proj Ms(A)}.
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Constructing the Ky-group

Back to Ko(A) . . .

A is a unital C*-algebra.

V(A) = {[p] : p € Proj Mso(A)} with [p] +[a] = [(57)].

We then define
Ko(A) := Groth V(A) = {[p] — [q] : p, g € Proj Ms(A)}.

Also, we want Ky to be a functor, so if h: A — B is a x-homomorphism,
we define hg : Ko(A) — Ko(B) by

ho([p] — [a]) = [h(p)] — [A(q)]-

Mark Tomforde Rings and Wings 2020 October 14, 2020 19 / 46



Constructing the Kp-group

What about when A is nonunital?
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Constructing the Ky-group

What about when A is nonunital? Let A be a nonunital C*-algebra. Let
A! be its (minimal) unitization. We have a short exact sequence

0 Al Al ™ Cc— 0

and both A! and C are unital, so using our prior definition we obtain
7o : Ko(Al) — Ko(C) = Z. We then define

Ko(A) = ker 7.
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Constructing the Ky-group

What about when A is nonunital? Let A be a nonunital C*-algebra. Let
Al be its (minimal) unitization. We have a short exact sequence

0 Al Al T .Cc——0
and both A! and C are unital, so using our prior definition we obtain

7o : Ko(A!) — Ko(C) =2 Z. We then define

Ko(A) = ker 7.

Fact: It turns out, that Ko(Al) = Ko(A) @ Z when A is nonunital.
Fact: If A has a countable approximate unit consisting of projections, then

Ko(A) = Groth V(A) = {[p] — [q] : p, g € Proj Ms(A)}.
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Examples of Kj
C, Mo(C), and K(H)

Projections in My (C) are finite rank, so V(C) = {0,1,2,...} and
Ko(C) = Z.

o = = = Q>
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Examples of Kj

C, Mp(C), and K(H)

Projections in M (C) are finite rank, so V(C) ={0,1,2,...} and
Ko(C) = Z.

Likewise, Moo (Mp(C)) = M (C), and projections in K(H) and
Moo (IKC(H)) are finite rank, so V(M,(C)) = V(K(H)) = {0,1,2,...} and
Z.

Ko(Ma(C))=Z  and Ko(K(H))) =

Mark Tomforde Rings and Wings 2020
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Examples of Kj
C, Mp(C), and K(H)
Projections in My (C) are finite rank, so V(C) ={0,1,2,...} and

Ko(C) 22 Z.

Likewise, Moo (Mp(C)) = My (C), and projections in KC(H) and
Moo (K(H)) are finite rank, so V(M,(C)) = V(K(H)) =2{0,1,2,...} and

Ko(My(C)=Z  and  Ko(K(H))) = Z.

B(H)
In Mso(B(H)) = B(H) all projections are either finite rank or have
countably infinite rank. So V(B(H)) =2 {0,1,2,...} U{occ} and

Ko(B(#))) = {0}.
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Examples of Kj
C, Mp(C), and K(H)
Projections in My (C) are finite rank, so V(C) ={0,1,2,...} and

Ko(C) 22 Z.

Likewise, Moo (Mp(C)) = M (C), and projections in K(H) and
Moo (IC(H)) are finite rank, so V(M,(C)) = V(K(H)) = {0,1,2,...} and

Ko(Mp(C)=Z  and  Ko(K(H))) = Z.
B(H)
In Mso(B(H)) = B(H) all projections are either finite rank or have
countably infinite rank. So V(B(H)) =2 {0,1,2,...} U{occ} and
Ko(B(#))) = {0}.
C(H) := B(H)/K(H)

In C(H) and M (C(H)) all finite-rank projections are equivalent, so

V(C(#)) = {0, 00} and
Ko(C(H)) = {0}
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A Note on Equivalence in the Ky-group

Let p and g be projections in A. We say p and g are . . .

Murray-von Neumann equivalent, denoted p ~ q if there exists v € A
with p = w* and g = v*v.

unitarily equivalent, denoted p ~,, g, if there exists unitary u € Al with
p = u*qu.

homotopic, denoted p ~p g, when p and g are connected by a
norm-continuous path of projections in A.
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A Note on Equivalence in the Ky-group

Let p and g be projections in A. We say p and g are . . .

Murray-von Neumann equivalent, denoted p ~ q if there exists v € A
with p = w* and g = v*v.

unitarily equivalent, denoted p ~,, g, if there exists unitary u € Al with
p = uqu.

homotopic, denoted p ~p g, when p and g are connected by a
norm-continuous path of projections in A.

Facts:

p~hqg = pruq = p~gq
p~g = (53)~u(35) and pr~ug = (53)~n(9)
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A Note on Equivalence in the Ky-group

Let p and g be projections in A. We say p and g are . . .

Murray-von Neumann equivalent, denoted p ~ q if there exists v € A
with p = w* and g = v*v.

unitarily equivalent, denoted p ~,, g, if there exists unitary u € Al with
p = uqu.

homotopic, denoted p ~p g, when p and g are connected by a
norm-continuous path of projections in A.

Facts:

p~hq = p~uyq = p~(g

p~q = (§5) ~u(§o) and prua = (§5) ~n (§0)

So in Mo (A) (and hence in Kp(A)) the Murray-von Neumann equivalence

classes, unitary equivalence classes, and homotopy equivalence classes
coincide.
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The Higher K-groups

In topology, the suspension of a topological space X is intuitively obtained
by stretching X into a cylinder and then collapsing both end faces to
points. One views X as “suspended” between these end points.

N

S
N

Suspension of a circle. The original &7
space is in blue, and the collapsed end
points are in green.
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The Higher K-groups

In topology, the suspension of a topological space X is intuitively obtained
by stretching X into a cylinder and then collapsing both end faces to
points. One views X as “suspended” between these end points.

N

S
N

Suspension of a circle. The original &7
space is in blue, and the collapsed end
points are in green.

The noncommutative version: If Ais a C*-algebra,
SA:={f € C([0,1],A) : f(0) = f(1) = 0}.
Equivalent descriptions:
SA = Gy((0,1),A) =2 G(R,A) = {f € C(T,A) : f(1) =0}
October 14, 2020 23 / 46



The Higher K-groups

Higher K-groups are defined inductively. Given Ky(A), we define

Kn+1(A) == K,(SA) forn=0,1,2,...

So inductively we obtain K,(A) := Ko(5"A).
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The Higher K-groups

Higher K-groups are defined inductively. Given Ky(A), we define

Kn+1(A) == K,(SA) forn=0,1,2,...

So inductively we obtain K,(A) := Ko(5"A).

Although the Ki-group is defined as Ki(A) := Ko(SA), we can also obtain
a description in terms of unitaries . . .
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The Ki-group
Define

At {Al if A is nonunital
A

if Ais unital.

o = = E A
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The Ki-group
Define

At Al if A'is nonunital
" A if Als unital.

Let U,(A™) denote set of unitariies in M,(AT). We can embed U,(A™) in
Unt1(AT) by x = (§9), and we define Uso(AT) := U2 ; Un(AT).
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The Ki-group
Define

At Al if A'is nonunital
~|A if Als unital.

Let U,(A™) denote set of unitariies in M,(AT). We can embed U,(A™) in
Unt1(AT) by x = (§9), and we define Uso(AT) := U2 ; Un(AT).

We say u,v € U,(A™) are homotopic if there is a norm-continuous path
v :0,1] = Up(AT) with ¢(0) = v and ¢(1) = v.
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The Ki-group
Define

At Al if A'is nonunital
" 1A if Ais unital.

Let U,(A™) denote set of unitariies in M,(A™). We can embed U,(A") in
Unt1(AT) by x = (§9), and we define Uso(AT) := U2 ; Un(AT).

We say u,v € U,(A™) are homotopic if there is a norm-continuous path
v :0,1] = Up(AT) with ¢(0) = v and ¢(1) = v.

Given u,v € Ux(AT) with u € Up(AT) and v € Uy, (AT), we define
un~pvif 3 k>max{mn}st (§.2 )and (§1,°, ) are homotopic.

k—n —m
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The Ki-group
Define

At Al if A'is nonunital
" 1A if Ais unital.

Let U,(A™) denote set of unitariies in M,(A™). We can embed U,(A") in
Unt1(AT) by x = (§9), and we define Uso(AT) := U2 ; Un(AT).

We say u,v € U,(A™) are homotopic if there is a norm-continuous path
v :0,1] = Up(AT) with ¢(0) = v and ¢(1) = v.

Given u,v € Ux(AT) with u € Up(AT) and v € Uy, (AT), we define
un~pvif 3 k>max{mn}st (§.2 )and (§1,°, ) are homotopic.
We define

Ki(A) == Uso(AT)/ ~p  with  [u]p+ [v]s == [(§9)],
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The Ki-group
Define

At Al if A'is nonunital
" 1A if Ais unital.

Let U,(A™) denote set of unitariies in M,(A™). We can embed U,(A") in
Unt1(AT) by x = (§9), and we define Uso(AT) := U2 ; Un(AT).

We say u,v € U,(A™) are homotopic if there is a norm-continuous path
v :0,1] = Up(AT) with ¢(0) = v and ¢(1) = v.

Given u,v € Ux(AT) with u € Up(AT) and v € Uy, (AT), we define
un~pvif 3 k>max{mn}st (§.2 )and (§1,°, ) are homotopic.
We define

Ki(A) == Uso(AT)/ ~p  with  [u]p+ [v]s == [(§9)],

Fact: Ki(A) is an abelian group; moreover —[u], = [u*].
K1 is a functor: If ¢ : A — B, it extends to ¢ : Mag(AT) — Muo(B™) and
we define ¢ : K1(A) = Ki(B) by ¢1([u]n) = [¢(u)]n

Mark Tomforde Rings and Wings 2020 October 14, 2020 25 / 46



Examples of K;

The Ki-group is a bit harder to compute at this stage. But with some

work, one can prove that all unitaries in Ux(C) and Ux(B(H)) are
homotopic, giving

Ki(C) = Ki(My(C)) = Ki(K(H)) = Ki(B(H)) = {0}
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Examples of K;

The Ki-group is a bit harder to compute at this stage. But with some

work, one can prove that all unitaries in Ux(C) and Ux(B(H)) are
homotopic, giving

Ki(C) = Ki(My(C)) = Ki(K(H)) = Ki(B(H)) = {0}

We'll show some tricks for computing more Ki-groups later.
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The Index Maps

At this point we have our functors K,,, but to obtain a homology we also
need connecting maps (sometimes called index maps); i.e., for each
C*-algebra A and each ideal | of A, we need to construct a map

On : Kn(A/l) = Knt1(l) for each n=0,1,...
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The Index Maps

At this point we have our functors K,,, but to obtain a homology we also
need connecting maps (sometimes called index maps); i.e., for each
C*-algebra A and each ideal | of A, we need to construct a map

On : Kn(A/l) = Knt1(l) for each n=0,1,...

I'll spare you the details, but the index maps do exist. Moreover, it can be
proven that each is unique up to sign, so despite what may seem to be a

complicated or unmotivated construction, we are assured we have obtained
the correct map in the end.
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The Index Maps

At this point we have our functors K,,, but to obtain a homology we also
need connecting maps (sometimes called index maps); i.e., for each
C*-algebra A and each ideal | of A, we need to construct a map

On : Kn(A/l) = Knt1(l) for each n=0,1,...

I'll spare you the details, but the index maps do exist. Moreover, it can be
proven that each is unique up to sign, so despite what may seem to be a
complicated or unmotivated construction, we are assured we have obtained
the correct map in the end.

Thus for any ideal / in A, we map apply K-theory to the short exact
sequence 0 — /| — A — A/l — 0 to obtain a long exact sequence

do

Ko(1) —— Ko(A) —— Ko(A/1) <2 Ky(1) —— Ki(A) — Ka(A/1) " ...
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The Index Maps

At this point we have our functors K,,, but to obtain a homology we also
need connecting maps (sometimes called index maps); i.e., for each
C*-algebra A and each ideal | of A, we need to construct a map

On : Kn(A/l) = Knt1(l) for each n=0,1,...

I'll spare you the details, but the index maps do exist. Moreover, it can be
proven that each is unique up to sign, so despite what may seem to be a
complicated or unmotivated construction, we are assured we have obtained
the correct map in the end.

Thus for any ideal / in A, we map apply K-theory to the short exact
sequence 0 — /| — A — A/l — 0 to obtain a long exact sequence

do

Ko(1) —— Ko(A) —— Ko(A/1) <2 Ky(1) —— Ki(A) — Ka(A/1) " ...

In addition, a truly remarkable fact emerges during the construction of the
index maps . . .
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Bott Periodicity

It turns out that Ko(A) = Ky (A) for any C*-algebra A. (Wow!)
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Bott Periodicity
It turns out that Ko(A) = Ky (A) for any C*-algebra A. (Wow!)

This implies all the higher K-groups after Ki are redundant. For instance,
K3(A) := K2(SA) = Ko(SA) = Ki(A).
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Bott Periodicity
It turns out that Ko(A) = Ky (A) for any C*-algebra A. (Wow!)

This implies all the higher K-groups after K are redundant. For instance,
K3(A) := K2(SA) = Ko(SA) = Ki(A).
Inductively, we obtain
Ko(A) = Ka(A) =2 Ky(A) =2 Ke(A) = ...
and Ki(A) = K3(A) = Ks5(A) =2 K7(A) = ...
Thus there are really only two distinct K-groups: Ko(A) and Ki(A).
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Bott Periodicity
It turns out that Ko(A) = Ky (A) for any C*-algebra A. (Wow!)

This implies all the higher K-groups after K are redundant. For instance,
K3(A) := K2(SA) = Ko(SA) = Ki(A).

Inductively, we obtain
Ko(A) = Ka(A) =2 Ky(A) =2 Ke(A) = ...

and Ki(A) = K3(A) = Ks5(A) =2 K7(A) = ...

Thus there are really only two distinct K-groups: Ko(A) and Ki(A).

Also, since the Kp-group and the Ks-group of any C*-algebra agree, for
any short exact sequence 0 — /| — A — A/l — 0, the corresponding long
exact sequence

Ko(1) —— Ko(A) —— Ko(A/1) 2 Ki(1) — Ky(A) — Ki(A/1) 2 ..

wraps around on itself . . .
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Theorem (The Cyclic 6-term Exact Sequence)

For any C*-algebra A and any ideal | of A, applying K-theory to the short
exact sequence

0 | —A—"5 A/l —0

yields the cyclic 6-term exact sequence

Ko(1) —2— Ko(A) —= Ko(A/1)

] |

Ku(A/1) <2 K (A) —— Ki(1)

Topological K-theory also has Bott periodicity of period 2. Algebraic
K-theory does not have Bott periodicity.

Fun Fact: If you work over R instead of C in Topological or Operator
K-theory, you get period 8 and a cyclic 24-term exact sequence.
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The 6-term exact sequence can be useful for computing K-groups.
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The 6-term exact sequence can be useful for computing K-groups.

Example: We know the K-groups for K(#) and B(#). We can use them
to calculate the K-groups of the Calkin algebra C(H) := B(H)/K(H).
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The 6-term exact sequence can be useful for computing K-groups.

Example: We know the K-groups for IC(#) and B(#). We can use them
to calculate the K-groups of the Calkin algebra C(H) := B(H)/K(H).
Applying K-theory to 0 — K(H) — B(H) — C(H) — 0 we get

Ko(K(H)) —— Ko(B(H)) —— Ko(C(#))

| |

Ki(C(H)) «—— Ki(B(H)) «— Ki(K(#H))
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The 6-term exact sequence can be useful for computing K-groups.

Example: We know the K-groups for IC(#) and B(#). We can use them
to calculate the K-groups of the Calkin algebra C(H) := B(H)/K(H).
Applying K-theory to 0 — K(H) — B(H) — C(H) — 0 we get

Ko(K(H)) —— Ko(B(H)) —— Ko(C(#))

| |

Ki(C(H)) «—— Ki(B(H)) «— Ki(K(#H))

Substituting known values yields

T »0 Ko(C(H))
Ki(C(H)) 0 i
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The 6-term exact sequence can be useful for computing K-groups.

Example: We know the K-groups for IC(#) and B(#). We can use them
to calculate the K-groups of the Calkin algebra C(H) := B(H)/K(H).
Applying K-theory to 0 — K(H) — B(H) — C(H) — 0 we get

Ko(K(H)) —— Ko(B(H)) —— Ko(C(#))

| |

Ki(C(H)) «—— Ki(B(H)) «— Ki(K(#H))

Substituting known values yields

T »0 Ko(C(H))
Ki(C(H)) 0 i

So Ki(C(H)) = Z and Ko(C(H)) = {0}.
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A covariant functor F from C* to AbGp is . . .

e Half Exact when every short exact sequence 0 + A— B — C =0
is taken to an exact sequence FA — FB — FC.

@ Homotopy Invariant If o : A— B and §: A — B are homotopic
(i.e., there exists a path of morphisms v: : A — B, t € [0, 1] such
that t — ~:(a) is norm continuous for all a € A and with 9 = « and
v1 = f3), then a,. = Bs.

e Stable For any C*-algebra A and any rank 1 projection p € K(H),
the morphism a+— a® p from A to A® K(H) induces an
isomorphism from F(A) onto F(A® K(H)).

e Continuous if whenever {A,, $,}°°, is a countable directed
sequence, then F(Ii_r’r;(An,(bn)) = Ii_m)(F(A,,),qbn*)
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A covariant functor F from C* to AbGp is . . .
o Half Exact when every short exact sequence0 > A— B — C — 0
is taken to an exact sequence FA — FB — FC.
@ Homotopy Invariant If o : A— B and §: A — B are homotopic

(i.e., there exists a path of morphisms v: : A — B, t € [0, 1] such
that t — ~:(a) is norm continuous for all a € A and with 9 = « and
v1 = f3), then a,. = Bs.

e Stable For any C*-algebra A and any rank 1 projection p € K(H),
the morphism a+— a® p from A to A® K(H) induces an
isomorphism from F(A) onto F(A® K(H)).

e Continuous if whenever {A,, $,}°°, is a countable directed
sequence, then F(Ii_r’r;(An,(bn)) = Ii_m)(F(A,,),qbn*)

Ko and Kj are half exact, homotopy invariant, stable, and continuous.
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A covariant functor F from C* to AbGp is . . .

e Half Exact when every short exact sequence 0 + A— B — C =0
is taken to an exact sequence FA — FB — FC.

@ Homotopy Invariant If o : A— B and §: A — B are homotopic
(i.e., there exists a path of morphisms v: : A — B, t € [0, 1] such
that t — ~:(a) is norm continuous for all a € A and with 9 = « and
v1 = f3), then a,. = Bs.

e Stable For any C*-algebra A and any rank 1 projection p € K(H),
the morphism a+— a® p from A to A® K(H) induces an
isomorphism from F(A) onto F(A® K(H)).

e Continuous if whenever {A,, $,}°°, is a countable directed
sequence, then F(Ii_r’r;(An,(bn)) = Ii_m)(F(A,,),qbn*)

Ko and Kj are half exact, homotopy invariant, stable, and continuous.

Theorem: If F is a functor that is half exact, homotopy invariant, stable,
and continuous with F(C) = Z and F(SC) = 0 then F is Kp.

Theorem: If F is a functor that is half exact, homotopy invariant, stable,
and continuous with F(C) =0 and F(SC) = Z then F is Kj.
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Other K-theory Results
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Other K-theory Results

Direct Sums: If A and B are C*-algebras, then
Ko(A &) B) = Ko(A) ) Ko(B) and Kl(A D B) = Kl(A) D Kl(B)
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Other K-theory Results

Direct Sums: If A and B are C*-algebras, then
Ko(A® B) = Ko(A) ® Ko(B) and  Ki(A@® B) = Ki(A) @ Ki(B).

Split exact sequences: If we have a split exact sequence

. s
0 | —— A== A/ 0
then Ky an Ki each take it to a split exact sequence

. So . S1
0 —— Ko(1) — Ko(A) > Ko(A/1) ——0 0—— Ki(1) — Ki(A) = Ki(A/I) ——0
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Other K-theory Results

Direct Sums: If A and B are C*-algebras, then
Ko(A® B) = Ko(A) @ Ko(B) and  Ki(A® B) = Ki(A) @ Ki(B).

Split exact sequences: If we have a split exact sequence

. s
0 | A A/l 0

then Ky an Ki each take it to a split exact sequence
. S0 . S1
0 —— Ko(1) — Ko(A) > Ko(A/1) ——0 0—— Ki(1) — Ki(A) = Ki(A/I) ——0

Tensor Products: The Kiinneth Theorem says that if A and B are nuclear
and their K-groups are all torsion free, then

Ko(A® B) = (Ko(A) ® Ko(B)) @ (K1(A) ® Ki(B))
Ki(A® B) = (Ko(A) ® Ki(B)) @ (K1(A) ® Ko(B))
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Pimsner-Voiculescu Exact Sequence for crossed products by Z

If Ais a unital C*-algebra and « is a *-automorphism of A, we may form
the crossed product A x, Z. If we let i : A — A X, Z denote the natural
embedding, then there is an exact sequence

Ko(A) —7%% Ko(A) —s Ko(A x4 Z)

T id—aq

Ki(A o Z) + 2 Ky(A) 7% Ky (A)

Note: This 6-term sequence does not come from a short exact sequence.
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Pimsner-Voiculescu Exact Sequence for crossed products by Z

If Ais a unital C*-algebra and « is a *-automorphism of A, we may form
the crossed product A x, Z. If we let i : A — A X, Z denote the natural
embedding, then there is an exact sequence

Ko(A) —7%% Ko(A) —s Ko(A x4 Z)

T id—aq

Ki(A o Z) + 2 Ky(A) 7% Ky (A)
Note: This 6-term sequence does not come from a short exact sequence.

Application: If Ais an nx n matrix and Oy is the associated Cuntz-Krieger
algebra, (a dual version of) the above sequence can be used to obtain

A Ke(On)

| |

Kl(OA) +—0+—0

So Ko(Oa) = coker(l — AY)  and  Ki(Oa) = ker(l — AY).
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Relation with Topological K-theory
If X is a compact Hausdorff space, the nth topological K-group of X is
isomorphic to K,(C(X)).

AF-algebras

If Ais an AF-algebra, A=1im(A,, ¢n), with each A, finite-dimensional.
Thus each A, is a direct sum of matrix algebras, and by the continuity of
K-theory and the fact K-theory distributes over direct sums

Ko(A) = lim(Ko(An). (in)o) = lim(Ko(An), (in)o) = lim(Z**, (in)o)

and
Ki(A) = lim(K1(An), (in)1) = lim(0, (in)1) = {0}

Therefore, when A is an AF-algebra, K1(A) =0 . Also, Ko(A) is a direct
limit of Z"«'s and, in particular, Ko(A) has no torsion.
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Stabilization and Morita Equivalence

A C*-algebra is stable if A K(H) = A

o = = E A
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Stabilization and Morita Equivalence
A C*-algebra is stable if A K(H) = A.

For any C*-algebra A, the stabilizaion of A is defined to be A® IC(H).
The stabilization A® K(H) is stable because K(H) ® K(H) = K(H), so

(ARKH)) o K(H) =2 A® (K(H) @ K(H)) = Ao K(H).

Another way to view the stabilization: Since My (C) = IC(H), we have

AR K(H) = A® Mo(C) = A® Moo(C) = Mao(A).

We say A and B are stably isomorphic when A® K(H) = B @ K(H)

Theorem: If A and B have countable approximate units (e.g., they are
unital or separable), then A and B are Morita equivalent if and only if A
and B are stably isomorphic.
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K-theory as an Invariant

Our groups Ky and Kj are stable:
Ko(A) = Ko(Mn(A)) = Ko(A® K(H))
Ki(A) = Ki(Mn(A)) = Ki(A® K(H))

Thus K-theory only “sees” a C*-algebra up to Morita equivalence; i.e., if
A and B are Morita equivglent, then Ko(A) = Ko(B) and Ki(A) = Ki(B).
In other words, K-theory is a Morita equivalence invariant.
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K-theory as an Invariant
Our groups Ky and Kj are stable:

Ko(A) = Ko(Ma(A)) = Ko(A® K(H))
Ki(A) = Ki(Mn(A)) = Ki(A® K(H))

Thus K-theory only “sees” a C*-algebra up to Morita equivalence; i.e., if
A and B are Morita equivglent, then Ko(A) = Ko(B) and Ki(A) = Ki(B).
In other words, K-theory is a Morita equivalence invariant.

K-theory can therefore be used to show two C*-algebras are “different”,
where “different” means “not Morita equivalent”. For example,

Ko(On) 2 Z/nZ.
Thus the Cuntz algebra O, is not Morita equivalent to O, when n # m.
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K-theory as an Invariant
Our groups Ky and Kj are stable:
Ko(A) = Ko(Mn(A)) = Ko(A ® K(H))
K1(A) = K1(Mn(A)) = Ki(A® K(H))
Thus K-theory only “sees” a C*-algebra up to Morita equivalence; i.e., if

A and B are Morita equivglent, then Ko(A) = Ko(B) and Ki(A) = Ki(B).
In other words, K-theory is a Morita equivalence invariant.

K-theory can therefore be used to show two C*-algebras are “different”,
where “different” means “not Morita equivalent”. For example,

Ko(On) 2 Z/nZ.
Thus the Cuntz algebra O, is not Morita equivalent to O, when n # m.

In some cases, K-theory can also be used to show two C*-algebras are
“the same”, where “the same” sometimes means “Morita equivalent” and
sometimes means “isomorphic”. In these situations, we say K-theory is a
complete invariant.
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Classification of AF-algebras
Let A be an AF-algebra. Recall K1(A) =0, so all K-theory info is in the
Ko-group. Since A has a countable approximate unit of projections,
Ko(A) = {[p] — [a] : p. q € Proj Mss(A)}.
We define the positive elements of Ky(A) to be
Ko(A)" = {[p] : p € Proj Mao(A)}.
Defining a < b iff b— a € Ko(A)* gives a partial ordering on Ko(A).
We define the scale of Ky(A) to be
2(A) = {[p] : p € Proj(A)}.
Theorem (Elliott)
Let A and B be AF-algebras.
(1) A is Morita equivalent to B iff (Ko(A), Ko(A)1) = (Ko(B), Ko(B)™).
(2) A= B iff (Ko(A), Ko(A)T,Z(A)) = (Ko(B), Ko(B)+, X(B)).
Moreover, when A (respectively, B) is unital, we may replace X(A) by
[14] (respectivly, we may replace ¥(B) by [1g]).

v
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Classification of Purely Infinite, Simple C*-algebras

Let A be a C*-algebra that is purely infinite and simple. Then
Ko(A) = Ko(A)™ = {[p] : p € Proj Mso(A)}. If A'is also unital, then
Ko(A) = £(A) = {[p] : p € Proj(A)}.
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Classification of Purely Infinite, Simple C*-algebras
Let A be a C*-algebra that is purely infinite and simple. Then
Ko(A) = Ko(A)T = {[p] : p € Proj Ms(A)}. If Ais also unital, then
Ko(A) = E(A) = {[p] : p € Proj(A)}.

Theorem (Kirchberg and Phillips)

Let A and B be purely infinite, simple C*-algebras that are also separable
and nuclear.
(1) If A and B are nonunital, the following are equivalent:
(a) A is Morita equivalent to B.
(b) A is isomorphic to B.
(C) Ko(A) = Ko(B) and Kl(A) = Kl(B)
(2) If A and B are unital, then
(i) A is Morita equivalent to B iff Ko(A) = Ko(B) and K1(A) = Ki(B).
(ii) A is isomorphic to B iff (Ko(A), [14]) = (Ko(B), [18]) and
Ki(A) = Kyi(B).

ITechnically, we also need A and B to be in the bootstrap class to which
the UCT applies, but let's not get into that.
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Classification of simple nuclear C*-algebras

Elliott conjectured that all simple, separable, nuclear C*-algebras can be
classified up to Morita equivalence by an invariant Ell(A) that includes the
ordered Kp-group, the Ki-group, and other data provided by K-theory.

'To be more precise: (1) <= (2) has been established and (1) <= (2) <= (3)
is known in many cases (e.g., when the trace space of the C*-algebra has finitely many
extreme points) but has yet to be proven in general.
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Elliott conjectured that all simple, separable, nuclear C*-algebras can be
classified up to Morita equivalence by an invariant Ell(A) that includes the
ordered Kp-group, the Ki-group, and other data provided by K-theory.
Counterexamples showed the conjecture is not true for all simple,
separable, nuclear C*-algebras — one needs an additional hypothesis,
which may be formulated in various ways. TFAE:

(i) A has finite nuclear dimension.

(i) Ais Z-stable; i.e., A= A® Z where Z is the Jiang-Su algebra.
(iii) A has strict comparison of positive elements.?

'To be more precise: (1) <= (2) has been established and (1) <= (2) <= (3)
is known in many cases (e.g., when the trace space of the C*-algebra has finitely many
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Classification of simple nuclear C*-algebras

Elliott conjectured that all simple, separable, nuclear C*-algebras can be
classified up to Morita equivalence by an invariant Ell(A) that includes the
ordered Kp-group, the Ki-group, and other data provided by K-theory.

Counterexamples showed the conjecture is not true for all simple,
separable, nuclear C*-algebras — one needs an additional hypothesis,
which may be formulated in various ways. TFAE:

(i) A has finite nuclear dimension.
(i) Ais Z-stable; i.e., A= A® Z where Z is the Jiang-Su algebra.
(iii) A has strict comparison of positive elements.?

Theorem (By many hands)

Let A and B be simple, separable, nuclear C*-algebras satisfing one (and
hence all) of the above three conditions. Then A= B if and only if
Ell(A) = ElI(B).

!To be more precise: (1) <= (2) has been established and (1) <= (2) <= (3)
is known in many cases (e.g., when the trace space of the C*-algebra has finitely many
extreme points) but has yet to be proven in general.
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What about non-simple C*-algebras?

Elliott's Theorem applies to non-simple AF-algebras. Some progress has
also been made for purely infinite C*-algebras.
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What about non-simple C*-algebras?

Elliott's Theorem applies to non-simple AF-algebras. Some progress has
also been made for purely infinite C*-algebras.

Far-reaching results have also been obtained for graph C*-algebras (which
contain the Cuntz-Krieger algebras and the AF-algebras as subclasses).
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What about non-simple C*-algebras?
Elliott's Theorem applies to non-simple AF-algebras. Some progress has
also been made for purely infinite C*-algebras.

Far-reaching results have also been obtained for graph C*-algebras (which
contain the Cuntz-Krieger algebras and the AF-algebras as subclasses).

Theorem (Eilers and T)

Let A be a separable graph C*-algebra with exactly one ideal I. Then A is
classified up to Morita equivalence by the 6-term exact sequence

Ko(1) —2— Ko(A) —== Ko(A/1)

s |

Ku(A/1) <2 Ky (A) 2 Ki(1)

where the Ky-groups in the invariant are considered as ordered groups.
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A complete classification up to Morita equivalence has been obtained for
C*-algebras of finite graphs.

The invariant, called ordered, filtered K-theory includes the 6-term exact
sequences of every ideal and subquotient of A.
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A complete classification up to Morita equivalence has been obtained for
C*-algebras of finite graphs.

The invariant, called ordered, filtered K-theory includes the 6-term exact
sequences of every ideal and subquotient of A.

Theorem (Eilers, Restorff, Ruiz, and Sorensen)

Let A be a separable graph C*-algebra of a finite graph. Then A is
classified up to Morita equivalence by its ordered, filtered K-theory.
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Generalizations of K-theory

Using extensions, it is possible to create a contravariant theory, called
K-homology that assigns groups K°(A) and K*(A) to a C*-algebra A.

KK-theory is a bivariant functor that takes a pair of C*-algebra (A, B) and
assigns an abelian group KK(A, B).

It turns out that

KK(C, A) = Ky(A) Recall: SC = Gy(R).
KK(SC, A) = K1(A)

KK(A,C) = K°(A)

KK(A,SC) = K1(A)

So KK-theory simultaneously generalizes K-theory and K-homology, and
can be viewed as a bivariant pairing between the two theories.

There is also a variant of KK-theory, known as E-theory, that was
developed to get more (and better) exact sequences.
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Table of K-groups
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To learn more about K-theory, visit your local library . . .

Introductory Textbooks

@ "K-theory and C*-algebras. A friendly approach” by N.E. Wegge-Olsen.

@ “An introduction to K-theory for C*-algebras” by M. Rgrdam,
F. Larsen, and N. Laustsen

Harder Textbook

@ "K-theory for operator algebras”, Second Edition, by B. Blackadar

A crash course on the Kp-group and Elliott's theorem for AF-algebras
appears in Sec. Ill and Sec. IV of Davidson’s book.

@ “(C*-algebras by example” by K. Davidson.
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