Conjugacy of Integral Matrices over Algebraic Extensions

Rebecca Afandi

Conjugacy over R

- For a ring R, we say that $A, B \in R^{n \times n}$ are R-conjugate if there is a
$C \in R^{n \times n}$ with $\operatorname{det}(C) \in R^{\times}$such that $C^{-1} A C=B$.

Conjugacy over R

- For a ring R, we say that $A, B \in R^{n \times n}$ are R-conjugate if there is a
$C \in R^{n \times n}$ with $\operatorname{det}(C) \in R^{\times}$such that $C^{-1} A C=B$.
- Write $A \sim_{R} B$.

Conjugacy over R

- For a ring R, we say that $A, B \in R^{n \times n}$ are R-conjugate if there is a
$C \in R^{n \times n}$ with $\operatorname{det}(C) \in R^{\times}$such that $C^{-1} A C=B$.
- Write $A \sim_{R} B$.
- $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathcal{O}_{K}$ for a number field K

Conjugacy over R

- For a ring R, we say that $A, B \in R^{n \times n}$ are R-conjugate if there is a
$C \in R^{n \times n}$ with $\operatorname{det}(C) \in R^{\times}$such that $C^{-1} A C=B$.
- Write $A \sim_{R} B$.
- $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathcal{O}_{K}$ for a number field K
The localization of \mathbb{Z}
at p is
$\mathbb{Z}_{(p)}=\left\{\frac{a}{b}: a, b \in \mathbb{Z}, p \nmid b\right\}$

Conjugacy over R

- For a ring R, we say that $A, B \in R^{n \times n}$ are R-conjugate if there is a
$C \in R^{n \times n}$ with $\operatorname{det}(C) \in R^{\times}$such that $C^{-1} A C=B$.
- Write $A \sim_{R} B$.
- $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathcal{O}_{K}$ for a number field K

Conjugacy over R

- For a ring R, we say that $A, B \in R^{n \times n}$ are R-conjugate if there is a
$C \in R^{n \times n}$ with $\operatorname{det}(C) \in R^{\times}$such that $C^{-1} A C=B$.
- Write $A \sim_{R} B$.
- $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathcal{O}_{K}$ for a number field K
\mathcal{O}_{K} is the set of
algebraic integral
elements (elements
with monic integral
minimal polynomial)

Conjugacy over R

- For a ring R, we say that $A, B \in R^{n \times n}$ are R-conjugate if there is a
$C \in R^{n \times n}$ with $\operatorname{det}(C) \in R^{\times}$such that $C^{-1} A C=B$.
- Write $A \sim_{R} B$.
- $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathcal{O}_{K}$ for a number field K

Conjugacy over R

- For a ring R, we say that $A, B \in R^{n \times n}$ are R-conjugate if there is a
$C \in R^{n \times n}$ with $\operatorname{det}(C) \in R^{\times}$such that $C^{-1} A C=B$.
- Write $A \sim_{R} B$.
- $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathcal{O}_{K}$ for a number field K

Conjugacy over R

R is a field

- For a ring R, we say that $A, B \in R^{n \times n}$ are R-conjugate if there is a
$C \in R^{n \times n}$ with $\operatorname{det}(C) \in R^{\times}$such that $C^{-1} A C=B$.
- Write $A \sim_{R} B$.
- $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathcal{O}_{K}$ for a number field K
- All matrices with the same squarefree characteristic polynomial are conjugate over a field.

Conjugacy over R

R is a field

- For a ring R, we say that $A, B \in R^{n \times n}$ are R-conjugate if there is a $C \in R^{n \times n}$ with $\operatorname{det}(C) \in R^{\times}$such that $C^{-1} A C=B$.
- Write $A \sim_{R} B$.
- $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathcal{O}_{K}$ for a number field K
- All matrices with the same squarefree characteristic polynomial are conjugate over a field.
- Let $f \in \mathbb{Z}[x]$ be monic and square-free of degree n.

Conjugacy over R

R is a field

- For a ring R, we say that $A, B \in R^{n \times n}$ are R-conjugate if there is a $C \in R^{n \times n}$ with $\operatorname{det}(C) \in R^{\times}$such that $C^{-1} A C=B$.
- Write $A \sim_{R} B$.
- $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathcal{O}_{K}$ for a number field K
- All matrices with the same squarefree characteristic polynomial are conjugate over a field.
- Let $f \in \mathbb{Z}[x]$ be monic and square-free of degree n.
- $\mathscr{M}_{f}=\left\{A \in \mathbb{Z}^{n \times n}: \operatorname{det}(x I-A)=f\right\}$

Conjugacy over R

R is a field

- For a ring R, we say that $A, B \in R^{n \times n}$ are R-conjugate if there is a $C \in R^{n \times n}$ with $\operatorname{det}(C) \in R^{\times}$such that $C^{-1} A C=B$.
- Write $A \sim_{R} B$.
- $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathcal{O}_{K}$ for a number field K
- All matrices with the same squarefree characteristic polynomial are conjugate over a field.
- Let $f \in \mathbb{Z}[x]$ be monic and square-free of degree n.
- $\mathscr{M}_{f}=\left\{A \in \mathbb{Z}^{n \times n}: \operatorname{det}(x I-A)=f\right\}$

Latimer and MacDuffee Correspondence (1933)

Conjugacy over R

R is a field

- For a ring R, we say that $A, B \in R^{n \times n}$ are R-conjugate if there is a $C \in R^{n \times n}$ with $\operatorname{det}(C) \in R^{\times}$such that $C^{-1} A C=B$.
- Write $A \sim_{R} B$.
- $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathcal{O}_{K}$ for a number field K
- All matrices with the same squarefree characteristic polynomial are conjugate over a field.
- Let $f \in \mathbb{Z}[x]$ be monic and square-free of degree n.
- $\mathscr{M}_{f}=\left\{A \in \mathbb{Z}^{n \times n}: \operatorname{det}(x I-A)=f\right\}$

Latimer and MacDuffee Correspondence (1933)
Taussky (1949)

Conjugacy over R

R is a field

- For a ring R, we say that $A, B \in R^{n \times n}$ are R-conjugate if there is a $C \in R^{n \times n}$ with $\operatorname{det}(C) \in R^{\times}$such that $C^{-1} A C=B$.
- Write $A \sim_{R} B$.
- $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathcal{O}_{K}$ for a number field K
- All matrices with the same squarefree characteristic polynomial are conjugate over a field.
- Let $f \in \mathbb{Z}[x]$ be monic and square-free of degree n.
- $\mathscr{M}_{f}=\left\{A \in \mathbb{Z}^{n \times n}: \operatorname{det}(x I-A)=f\right\}$

Latimer and MacDuffee Correspondence (1933)
Taussky (1949)

- $f(x)$ irreducible with root α

Conjugacy over R

R is a field

- For a ring R, we say that $A, B \in R^{n \times n}$ are R-conjugate if there is a $C \in R^{n \times n}$ with $\operatorname{det}(C) \in R^{\times}$such that $C^{-1} A C=B$.
- Write $A \sim_{R} B$.
- $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathcal{O}_{K}$ for a number field K
- All matrices with the same squarefree characteristic polynomial are conjugate over a field.
- Let $f \in \mathbb{Z}[x]$ be monic and square-free of degree n.
- $\mathscr{M}_{f}=\left\{A \in \mathbb{Z}^{n \times n}: \operatorname{det}(x I-A)=f\right\}$

Latimer and MacDuffee Correspondence (1933)

Taussky (1949)

- $f(x)$ irreducible with root α
- Let $K=\mathbb{Q}(\alpha)$

Conjugacy over R

R is a field

- For a ring R, we say that $A, B \in R^{n \times n}$ are R-conjugate if there is a $C \in R^{n \times n}$ with $\operatorname{det}(C) \in R^{\times}$such that $C^{-1} A C=B$.
- Write $A \sim_{R} B$.
- $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathcal{O}_{K}$ for a number field K
- All matrices with the same squarefree characteristic polynomial are conjugate over a field.
- Let $f \in \mathbb{Z}[x]$ be monic and square-free of degree n.
- $\mathscr{M}_{f}=\left\{A \in \mathbb{Z}^{n \times n}: \operatorname{det}(x I-A)=f\right\}$

Latimer and MacDuffee Correspondence (1933)

Taussky (1949)

- $f(x)$ irreducible with root α
- Let $K=\mathbb{Q}(\alpha)$
- $\mathscr{M}_{f} /_{\sim_{\mathbb{Z}}} \leftrightarrow$ fractional $\mathbb{Z}[\alpha]$ -ideal classes in K

\mathbb{Z}-conjugacy within \mathscr{M}_{f} for $f=x^{2}+5$

\mathbb{Z}-conjugacy within \mathscr{M}_{f} for $f=x^{2}+5$

- Let $f=x^{2}+5$ and K be the number field $\mathbb{Q}(\alpha) \cong \mathbb{Q}[x] /(f)$. Note: $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$. Some $\mathbb{Z}[\alpha]$-fractional ideals in K are:

\mathbb{Z}-conjugacy within \mathscr{M}_{f} for $f=x^{2}+5$

- Let $f=x^{2}+5$ and K be the number field $\mathbb{Q}(\alpha) \cong \mathbb{Q}[x] /(f)$. Note: $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$. Some $\mathbb{Z}[\alpha]$-fractional ideals in K are:
- $\mathbb{Z}[\alpha]=1 \mathbb{Z} \oplus \alpha \mathbb{Z}$

\mathbb{Z}-conjugacy within \mathscr{M}_{f} for $f=x^{2}+5$

- Let $f=x^{2}+5$ and K be the number field $\mathbb{Q}(\alpha) \cong \mathbb{Q}[x] /(f)$. Note: $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$. Some $\mathbb{Z}[\alpha]$-fractional ideals in K are:
- $\mathbb{Z}[\alpha]=1 \mathbb{Z} \oplus \alpha \mathbb{Z}$
- $I=2 \mathbb{Z} \oplus(1+\alpha) \mathbb{Z}$ (non-principal)

\mathbb{Z}-conjugacy within \mathscr{M}_{f} for $f=x^{2}+5$

- Let $f=x^{2}+5$ and K be the number field $\mathbb{Q}(\alpha) \cong \mathbb{Q}[x] /(f)$. Note: $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$. Some $\mathbb{Z}[\alpha]$-fractional ideals in K are:
- $\mathbb{Z}[\alpha]=1 \mathbb{Z} \oplus \alpha \mathbb{Z}$
- $I=2 \mathbb{Z} \oplus(1+\alpha) \mathbb{Z}$ (non-principal)
- These are representatives of the fractional ideal classes (fractional ideals I and J are equivalent if there is $k \in \mathbb{Q}(\alpha)$ such that $k I=J)$.

\mathbb{Z}-conjugacy within \mathscr{M}_{f} for $f=x^{2}+5$

- Let $f=x^{2}+5$ and K be the number field $\mathbb{Q}(\alpha) \cong \mathbb{Q}[x] /(f)$. Note: $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$. Some $\mathbb{Z}[\alpha]$-fractional ideals in K are:
- $\mathbb{Z}[\alpha]=1 \mathbb{Z} \oplus \alpha \mathbb{Z}$
- $I=2 \mathbb{Z} \oplus(1+\alpha) \mathbb{Z}$ (non-principal)
- These are representatives of the fractional ideal classes (fractional ideals I and J are equivalent if there is $k \in \mathbb{Q}(\alpha)$ such that $k I=J)$.
- The fractional ideal classes form the ideal class group, denoted by $\operatorname{Pic}(\mathbb{Z}[\alpha])$. The class number is the order of the class group. $\left(h_{K}=2\right.$ for $K=\mathbb{Q}(\alpha)$.)

\mathbb{Z}-conjugacy within \mathscr{M}_{f} for $f=x^{2}+5$

- Let $f=x^{2}+5$ and K be the number field $\mathbb{Q}(\alpha) \cong \mathbb{Q}[x] /(f)$. Note: $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$. Some $\mathbb{Z}[\alpha]$-fractional ideals in K are:
- $\mathbb{Z}[\alpha]=1 \mathbb{Z} \oplus \alpha \mathbb{Z}$
- $I=2 \mathbb{Z} \oplus(1+\alpha) \mathbb{Z}$ (non-principal)

$$
\left\{\begin{array}{l}
\alpha \cdot 1=0 \cdot 1+1 \cdot \alpha \\
\alpha \cdot \alpha=-5 \cdot 1+0 \cdot \alpha
\end{array} \quad \text { so } \mathbb{Z}[\alpha] \text { corresponds to } C_{f}=\left(\begin{array}{cc}
0 & 1 \\
-5 & 0
\end{array}\right) .\right.
$$

\mathbb{Z}-conjugacy within \mathscr{M}_{f} for $f=x^{2}+5$

$$
\mathbb{Z}[\alpha] \not ⿻_{\mathbb{Z}[\alpha]} I \Longrightarrow\left(\begin{array}{cc}
0 & 1 \\
-5 & 0
\end{array}\right) \varkappa_{\mathbb{Z}}\left(\begin{array}{cc}
-1 & 2 \\
-3 & 1
\end{array}\right) \begin{aligned}
& \mathrm{S} \\
& \mathrm{~s} \text { in } K \text { are: }
\end{aligned}
$$

- $\mathbb{Z}[\alpha]=1 \mathbb{Z} \oplus \alpha \mathbb{Z}$
- $I=2 \mathbb{Z} \oplus(1+\alpha) \mathbb{Z}$ (non-principal)

$$
\left\{\begin{array}{l}
\alpha \cdot 1=0 \cdot 1+1 \cdot \alpha \\
\alpha \cdot \alpha=-5 \cdot 1+0 \cdot \alpha
\end{array} \quad \text { so } \mathbb{Z}[\alpha] \text { corresponds to } C_{f}=\left(\begin{array}{cc}
0 & 1 \\
-5 & 0
\end{array}\right) .\right.
$$

Conjugacy over R

R is a field

- For a ring R, we say that $A, B \in R^{n \times n}$ are R-conjugate if there is a $C \in R^{n \times n}$ with $\operatorname{det}(C) \in R^{\times}$such that $C^{-1} A C=B$.
- Write $A \sim_{R} B$.
- $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathcal{O}_{K}$ for a number field K
- All matrices with the same squarefree characteristic polynomial are conjugate over a field.
- Let $f \in \mathbb{Z}[x]$ be monic and square-free of degree n.
- $\mathscr{M}_{f}=\left\{A \in \mathbb{Z}^{n \times n}: \operatorname{det}(x I-A)=f\right\}$

Latimer and MacDuffee Correspondence (1933)

Taussky (1949)

- $f(x)$ irreducible with root α
- Let $K=\mathbb{Q}(\alpha)$
- $\mathscr{M}_{f} /_{\sim_{\mathbb{Z}}} \leftrightarrow$ fractional $\mathbb{Z}[\alpha]$ -ideal classes in K

Conjugacy over R

R is a field

- For a ring R, we say that $A, B \in R^{n \times n}$ are R-conjugate if there is a $C \in R^{n \times n}$ with $\operatorname{det}(C) \in R^{\times}$such that $C^{-1} A C=B$.
- Write $A \sim_{R} B$.
- $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathcal{O}_{K}$ for a number field K
- All matrices with the same squarefree characteristic polynomial are conjugate over a field.
- Let $f \in \mathbb{Z}[x]$ be monic and square-free of degree n.
- $\mathscr{M}_{f}=\left\{A \in \mathbb{Z}^{n \times n}: \operatorname{det}(x I-A)=f\right\}$

Latimer and MacDuffee Correspondence (1933)
Taussky (1949)

- $f(x)$ irreducible with root α
- Let $K=\mathbb{Q}(\alpha)$
- $\mathscr{M}_{f} I_{\sim_{\mathbb{Z}}} \leftrightarrow$ fractional $\mathbb{Z}[\alpha]$ -ideal classes in K

Conjugacy over R

R is a field

- For a ring R, we say that $A, B \in R^{n \times n}$ are R-conjugate if there is a $C \in R^{n \times n}$ with $\operatorname{det}(C) \in R^{\times}$such that $C^{-1} A C=B$.
- Write $A \sim_{R} B$.
- $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathcal{O}_{K}$ for a number field K
- All matrices with the same squarefree characteristic polynomial are conjugate over a field.
- Let $f \in \mathbb{Z}[x]$ be monic and square-free of degree n.
- $\mathscr{M}_{f}=\left\{A \in \mathbb{Z}^{n \times n}: \operatorname{det}(x I-A)=f\right\}$

Latimer and MacDuffee Correspondence (1933)

Taussky (1949)
Marseglia (2019)

- $f(x)$ irreducible with root $\alpha \quad$ - $f(x)=\prod_{i=1}^{m} f_{i}$ square-free with $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right), ~$
- Let $K=\mathbb{Q}(\alpha)$
- $\mathscr{M}_{f} /_{\sim_{\mathbb{Z}}} \leftrightarrow$ fractional $\mathbb{Z}[\alpha]$ -ideal classes in K

Conjugacy over R

- For a ring R, we say that $A, B \in R^{n \times n}$ are R-conjugate if there is a $C \in R^{n \times n}$ with $\operatorname{det}(C) \in R^{\times}$such that $C^{-1} A C=B$.
- Write $A \sim_{R} B$.
- $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathcal{O}_{K}$ for a number field K
- All matrices with the same squarefree characteristic polynomial are conjugate over a field.
- Let $f \in \mathbb{Z}[x]$ be monic and square-free of degree n.
- $\mathscr{M}_{f}=\left\{A \in \mathbb{Z}^{n \times n}: \operatorname{det}(x I-A)=f\right\}$

Latimer and MacDuffee Correspondence (1933)

Taussky (1949)
Marseglia (2019)

- $f(x)=\prod_{i=1}^{m} f_{i}$ square-free with $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$
- Let $K=\prod_{i=1}^{m} \mathbb{Q}\left(\alpha_{i}\right)$

Conjugacy over R

R is a field

- For a ring R, we say that $A, B \in R^{n \times n}$ are R-conjugate if there is a $C \in R^{n \times n}$ with $\operatorname{det}(C) \in R^{\times}$such that $C^{-1} A C=B$.
- Write $A \sim_{R} B$.
- $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathcal{O}_{K}$ for a number field K
- All matrices with the same squarefree characteristic polynomial are conjugate over a field.
- Let $f \in \mathbb{Z}[x]$ be monic and square-free of degree n.
- $\mathscr{M}_{f}=\left\{A \in \mathbb{Z}^{n \times n}: \operatorname{det}(x I-A)=f\right\}$

Latimer and MacDuffee Correspondence (1933)

Taussky (1949)
Marseglia (2019)

- $f(x)$ irreducible with root α
. $f(x)=\prod_{i=1}^{m} f_{i}$ square-free with $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$
- Let $K=\mathbb{Q}(\alpha)$
- $\mathscr{M}_{f} \mathcal{I}_{\sim_{\mathbb{Z}}} \leftrightarrow$ fractional $\mathbb{Z}[\alpha]$ -ideal classes in K
- Let $K=\prod_{i=1}^{m} \mathbb{Q}\left(\alpha_{i}\right)$
- $\mathscr{M}_{f} /_{\sim_{\mathbb{Z}}} \leftrightarrow$ full $\mathbb{Z}\left[\left(\alpha_{1}, \ldots, \alpha_{m}\right)\right]$-module classes in K

$$
\begin{gathered}
\mathbb{Z} \text {-conjugacy within } \mathscr{M}_{f} \text { for } f=f_{1} f_{2} \text { with } \\
f_{1}=x^{2}+4 x+7, f_{2}=x^{3}-9 x^{2}-3 x-1
\end{gathered}
$$

\mathbb{Z}-conjugacy within \mathscr{M}_{f} for $f=f_{1} f_{2}$ with $f_{1}=x^{2}+4 x+7, f_{2}=x^{3}-9 x^{2}-3 x-1$

- Letting $K_{i}=\mathbb{Q}\left(\alpha_{i}\right) \cong \mathbb{Q}[x] /\left(f_{i}\right)$ we consider classes of $\mathbb{Z}\left[\left(\alpha_{1}, \alpha_{2}\right)\right]$-modules within $K:=K_{1} \times K_{2}$.
\mathbb{Z}-conjugacy within \mathscr{M}_{f} for $f=f_{1} f_{2}$ with
$f_{1}=x^{2}+4 x+7, f_{2}=x^{3}-9 x^{2}-3 x-1$
- Letting $K_{i}=\mathbb{Q}\left(\alpha_{i}\right) \cong \mathbb{Q}[x] /\left(f_{i}\right)$ we consider classes of $\mathbb{Z}\left[\left(\alpha_{1}, \alpha_{2}\right)\right]$-modules within $K:=K_{1} \times K_{2}$.
- $\mathcal{O}_{K}=\mathcal{O}_{K_{1}} \times \mathcal{O}_{K_{2}}$ but in general, fractional ideals are not products of fractional ideals in the $\mathscr{J}_{\mathbb{Z}\left[\alpha_{i}\right]}$.

$$
\begin{gathered}
\mathbb{Z} \text {-conjugacy within } \mathscr{M}_{f} \text { for } f=f_{1} f_{2} \text { with } \\
f_{1}=x^{2}+4 x+7, f_{2}=x^{3}-9 x^{2}-3 x-1
\end{gathered}
$$

- Letting $K_{i}=\mathbb{Q}\left(\alpha_{i}\right) \cong \mathbb{Q}[x] /\left(f_{i}\right)$ we consider classes of $\mathbb{Z}\left[\left(\alpha_{1}, \alpha_{2}\right)\right]$-modules within $K:=K_{1} \times K_{2}$.
- $\mathcal{O}_{K}=\mathcal{O}_{K_{1}} \times \mathcal{O}_{K_{2}}$ but in general, fractional ideals are not products of fractional ideals in the $\mathscr{J}_{\mathbb{Z}\left[\alpha_{i}\right]}$.
- $\mathscr{M}_{f_{1}}$ has $2 \mathbb{Z}$-conjugacy classes and $\mathscr{M}_{f_{2}}$ has $6 \mathbb{Z}$ -conjugacy classes, but \mathscr{M}_{f} has $852 \mathbb{Z}$-classes.

Marseglia's bijection

Marseglia's bijection

$$
\begin{aligned}
\varphi_{\mathbb{Z}}: \mathcal{I}_{\mathbb{Z}[\alpha]}{ }^{\prime} \cong \mathbb{Z}[\alpha] & \rightarrow \mathscr{M}_{f} /_{\sim} \sim \\
{[I] } & \mapsto[A]
\end{aligned}
$$

Marseglia's bijection

$$
\varphi_{\mathbb{Z}}: \mathscr{J}_{\mathbb{Z}[\alpha]} \cong_{\mathbb{Z}[\alpha]} \rightarrow \mathscr{M}_{f} /_{\sim \mathbb{Z}}
$$

$\mathscr{J}_{\mathbb{Z}[\alpha]}$ denotes the set of
$[I] \mapsto[A]$

Marseglia's bijection

$$
\varphi_{\mathbb{Z}}: \mathscr{F}_{\mathbb{Z}[\alpha]} \cong_{\mathbb{Z}[\alpha]} \rightarrow \mathscr{M}_{f} /_{\sim \mathbb{Z}}
$$

$$
[I] \mapsto[A]
$$

Marseglia's bijection

$$
\varphi_{\mathbb{Z}}: \mathscr{F}_{\mathbb{Z}[\alpha]} \cong_{\mathbb{Z}[\alpha]} \rightarrow \mathscr{M}_{f} /_{\sim \mathbb{Z}}
$$

I can be written as

$$
I=\bigoplus_{i=1}^{n} v_{i} \mathbb{Z}
$$

A is the multiplication-by- α matrix with respect to the \mathbb{Z}-basis $\left\{v_{1}, \ldots, v_{n}\right\}$

Marseglia's bijection

$$
\varphi_{\mathbb{Z}}: \operatorname{ICM}(\mathbb{Z}[\alpha]) \rightarrow \mathscr{M}_{f} f_{\sim \mathbb{Z}}
$$

I can be written as

$$
I=\bigoplus_{i=1}^{n} v_{i} \mathbb{Z}
$$

$[I] \mapsto[A]$
A is the multiplication-by- α matrix with respect to the \mathbb{Z}-basis $\left\{v_{1}, \ldots, v_{n}\right\}$

Marseglia's bijection

$$
\begin{aligned}
\varphi_{\mathbb{Z}}: \operatorname{ICM}(\mathbb{Z}[\alpha]) & \rightarrow \mathscr{M}_{f} f_{\sim} \mathbb{Z} \\
{[I] } & \mapsto[A]
\end{aligned}
$$

Marseglia's bijection

$$
\begin{aligned}
\varphi_{\mathbb{Z}}: \operatorname{ICM}(\mathbb{Z}[\alpha]) & \rightarrow \mathscr{M}_{f} f_{\sim} \sim \\
{[I] } & \mapsto[A]
\end{aligned}
$$

- How to find $\psi_{\mathbb{Z}}:=\varphi_{\mathbb{Z}}^{-1}$

Marseglia's bijection

$$
\begin{aligned}
\varphi_{\mathbb{Z}}: \operatorname{ICM}(\mathbb{Z}[\alpha]) & \rightarrow \mathscr{M}_{f} f_{\sim} \mathbb{Z} \\
{[I] } & \mapsto[A]
\end{aligned}
$$

- How to find $\psi_{\mathbb{Z}}:=\varphi_{\mathbb{Z}}^{-1}$
- For f irreducible, find $\bar{v}=\left(v_{1}, \ldots, v_{n}\right)^{t}$ so that $A \bar{v}=\alpha \bar{v}$. Let $I=\oplus v_{i} \mathbb{Z}$ and let $\psi_{\mathbb{Z}}([A])=[I]$.

Marseglia's bijection

$$
\begin{aligned}
\varphi_{\mathbb{Z}}: \operatorname{ICM}(\mathbb{Z}[\alpha]) & \rightarrow \mathscr{M}_{f} f_{\sim} \sim \\
{[I] } & \mapsto[A]
\end{aligned}
$$

- How to find $\psi_{\mathbb{Z}}:=\varphi_{\mathbb{Z}}^{-1}$
- For f irreducible, find $\bar{v}=\left(v_{1}, \ldots, v_{n}\right)^{t}$ so that $A \bar{v}=\alpha \bar{v}$. Let $I=\oplus v_{i} \mathbb{Z}$ and let $\psi_{\mathbb{Z}}([A])=[I]$.
- For f with $m>1$ irreducible factors, let $A \bar{v}_{i}=\alpha_{i} \bar{v}_{i}$ and $\bar{v}_{i}=\left(v_{i 1}, \ldots, v_{i n}\right)^{t}$, then $\psi_{\mathbb{Z}}([A])$ has representative $I=\left(v_{11}, \ldots v_{m 1}\right) \mathbb{Z} \oplus \ldots \oplus\left(v_{1 n}, \ldots, v_{m n}\right) \mathbb{Z}$.

Example: \mathbb{Z}-conjugacy within \mathscr{M}_{f} for $f=x^{2}+23$

Example: \mathbb{Z}-conjugacy within \mathscr{M}_{f} for $f=x^{2}+23$

- Letting $K:=\mathbb{Q}(\alpha)=\mathbb{Q}[x] /(f)$, we have

$$
\mathbb{Z}[\alpha]=1 \mathbb{Z} \oplus \alpha \mathbb{Z} \subsetneq \mathcal{O}_{K}=1 \mathbb{Z} \oplus\left(\frac{1+\alpha}{2}\right) \mathbb{Z}
$$

Example: \mathbb{Z}-conjugacy within \mathscr{M}_{f} for $f=x^{2}+23$

- Letting $K:=\mathbb{Q}(\alpha)=\mathbb{Q}[x] /(f)$, we have

$$
\mathbb{Z}[\alpha]=1 \mathbb{Z} \oplus \alpha \mathbb{Z} \subsetneq \mathcal{O}_{K}=1 \mathbb{Z} \oplus\left(\frac{1+\alpha}{2}\right) \mathbb{Z}
$$

- For a $\mathbb{Z}[\alpha]$-ideal I, the multiplicator ring of I is $(I: I)$.

Example: \mathbb{Z}-conjugacy within \mathscr{M}_{f} for $f=x^{2}+23$

- Letting $K:=\mathbb{Q}(\alpha)=\mathbb{Q}[x] /(f)$, we have

$$
\mathbb{Z}[\alpha]=1 \mathbb{Z} \oplus \alpha \mathbb{Z} \subsetneq \mathcal{O}_{K}=1 \mathbb{Z} \oplus\left(\frac{1+\alpha}{2}\right) \mathbb{Z}
$$

- For a $\mathbb{Z}[\alpha]$-ideal I, the multiplicator ring of I is $(I: I)$.

$$
(I: J)=\{x \in \mathbb{Q}(\alpha): x J \subseteq I\}
$$

Example: \mathbb{Z}-conjugacy within \mathscr{M}_{f} for $f=x^{2}+23$

- Letting $K:=\mathbb{Q}(\alpha)=\mathbb{Q}[x] /(f)$, we have

$$
\mathbb{Z}[\alpha]=1 \mathbb{Z} \oplus \alpha \mathbb{Z} \subsetneq \mathcal{O}_{K}=1 \mathbb{Z} \oplus\left(\frac{1+\alpha}{2}\right) \mathbb{Z}
$$

- For a $\mathbb{Z}[\alpha]$-ideal I, the multiplicator ring of I is $(I: I)$.
- If $I=k J$ for $k \in \mathbb{Q}(\alpha)$, then $(I: I)=(J: J)$.

Example: \mathbb{Z}-conjugacy within \mathscr{M}_{f} for $f=x^{2}+23$

- Letting $K:=\mathbb{Q}(\alpha)=\mathbb{Q}[x] /(f)$, we have

$$
\mathbb{Z}[\alpha]=1 \mathbb{Z} \oplus \alpha \mathbb{Z} \subsetneq \mathcal{O}_{K}=1 \mathbb{Z} \oplus\left(\frac{1+\alpha}{2}\right) \mathbb{Z}
$$

- For a $\mathbb{Z}[\alpha]$-ideal I, the multiplicator ring of I is $(I: I)$.
- If $I=k J$ for $k \in \mathbb{Q}(\alpha)$, then $(I: I)=(J: J)$.
- $\mathbb{Z}[\alpha] \leftrightarrow C_{f}=\left(\begin{array}{cc}0 & 1 \\ -23 & 0\end{array}\right)$ and $\mathcal{O}_{K} \leftrightarrow A=\left(\begin{array}{cc}-1 & 2 \\ -12 & 1\end{array}\right)$. These matrices are not \mathbb{Z}-conjugate.

Example: \mathbb{Z}-conjugacy within \mathscr{M}_{f} for $f=x^{2}+23$

- Letting $K:=\mathbb{Q}(\alpha)=\mathbb{Q}[x] /(f)$, we have

$$
\mathbb{Z}[\alpha]=1 \mathbb{Z} \oplus \alpha \mathbb{Z} \subsetneq \mathcal{O}_{K}=1 \mathbb{Z} \oplus\left(\frac{1+\alpha}{2}\right) \mathbb{Z}
$$

- For a $\mathbb{Z}[\alpha]$-ideal I, the multiplicator ring of I is $(I: I)$.
- If $I=k J$ for $k \in \mathbb{Q}(\alpha)$, then $(I: I)=(J: J)$.
- $\mathbb{Z}[\alpha] \leftrightarrow C_{f}=\left(\begin{array}{cc}0 & 1 \\ -23 & 0\end{array}\right)$ and $\mathcal{O}_{K} \leftrightarrow A=\left(\begin{array}{cc}-1 & 2 \\ -12 & 1\end{array}\right)$. These matrices are not \mathbb{Z}-conjugate.
- $\operatorname{ICM}(\mathbb{Z}[\alpha])=\operatorname{Pic}(\mathbb{Z}[\alpha]) \sqcup \operatorname{Pic}\left(\mathcal{O}_{K}\right)$. Each Picard group has order 3 , so there are $6 \mathbb{Z}$-conjugacy classes within \mathscr{M}_{f}.

Example: \mathbb{Z}-conjugacy within \mathscr{M}_{f} for $f=x^{2}+23$

- Letting $K:=\mathbb{Q}(\alpha)=\mathbb{Q}[x] /(f)$, we have

$$
\mathbb{Z}[\alpha]=1 \mathbb{Z} \oplus \alpha \mathbb{Z} \subsetneq \mathcal{O}_{K}=1 \mathbb{Z} \oplus\left(\frac{1+\alpha}{2}\right) \mathbb{Z}
$$

- For a $\mathbb{Z}[\alpha]$-ideal I, the multiplicator ring of I is $(I: I)$.
- If $I=k J$ for $k \in \mathbb{Q}(\alpha)$, then $(I: I)=(J: J)$.
- $\mathbb{Z}[\alpha] \leftrightarrow C_{f}=\left(\begin{array}{cc}0 & 1 \\ -23 & 0\end{array}\right)$ and $\mathcal{O}_{K} \leftrightarrow A=\left(\begin{array}{cc}-1 & 2 \\ -12 & 1\end{array}\right)$. These matrices are not \mathbb{Z}-conjugate.

$$
\operatorname{ICM}(\mathbb{Z}[\alpha])=\sqcup_{\mathcal{O}} \operatorname{ICM}_{\mathscr{O}}(\mathbb{Z}[\alpha]) \supseteq \sqcup_{\mathscr{O}} \operatorname{Pic}(\mathcal{O})
$$

- $\operatorname{ICM}(\mathbb{Z}[\alpha])=\operatorname{Pic}(\mathbb{Z}[\alpha]) \sqcup \operatorname{Pic}\left(\mathcal{O}_{K}\right)$. Each Picard group has order 3 , so there are $6 \mathbb{Z}$-conjugacy classes within \mathscr{M}_{f}.

$\mathbb{Z}_{(p)}$-conjugacy

$\mathbb{Z}_{(p)}$-conjugacy

- For f square-free, integral matrices in \mathscr{M}_{f} are $\mathbb{Z}_{(p)}$ -conjugate for $p \nmid \operatorname{disc}(f)$.

$\mathbb{Z}_{(p)}$-conjugacy

- For f square-free, integral matrices in \mathscr{M}_{f} are $\mathbb{Z}_{(p)}$ -conjugate for $p \nmid \operatorname{disc}(f)$.
- A local-global principal does not hold for matrix conjugacy: $A \sim_{\mathbb{Z}_{(p)}} B \forall p \nRightarrow A \sim_{\mathbb{Z}} B$

$\mathbb{Z}_{(p)^{-c o n j u g a c y}}$

- For f square-free, integral matrices in \mathscr{M}_{f} are $\mathbb{Z}_{(p)}$ -conjugate for $p \nmid \operatorname{disc}(f)$.
- A local-global principal does not hold for matrix conjugacy: $A \sim_{\mathbb{Z}_{(p)}} B \forall p \nRightarrow A \sim_{\mathbb{Z}} B$
- I refer to matrices which satisfy $A \sim_{\mathbb{Z}_{(p)}} B$ for all primes p as locally conjugate.

Failure of local-global principal

Failure of local-global principal

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
0 & -6 \\
1 & 0
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
0 & 2 \\
-3 & 0
\end{array}\right) \text { have characteristic polynomial } c(x)=x^{2}+6, \text { with } \\
& \operatorname{disc}(c)=-24
\end{aligned}
$$

Failure of local-global principal

$A=\left(\begin{array}{cc}0 & -6 \\ 1 & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}0 & 2 \\ -3 & 0\end{array}\right)$ have characteristic polynomial $c(x)=x^{2}+6$, with
$\operatorname{disc}(c)=-24$.

- A and B are conjugate over $\mathbb{Z}_{(p)}$ for $p \neq 2,3$.

Failure of local-global principal

$A=\left(\begin{array}{cc}0 & -6 \\ 1 & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}0 & 2 \\ -3 & 0\end{array}\right)$ have characteristic polynomial $c(x)=x^{2}+6$, with $\operatorname{disc}(c)=-24$.

- A and B are conjugate over $\mathbb{Z}_{(p)}$ for $p \neq 2,3$.
- $C_{1}=\left(\begin{array}{cc}-3 & 0 \\ 0 & 1\end{array}\right)$ yields a conjugating matrix over $\mathbb{Z}_{(2)}$.

Failure of local-global principal

$A=\left(\begin{array}{cc}0 & -6 \\ 1 & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}0 & 2 \\ -3 & 0\end{array}\right)$ have characteristic polynomial $c(x)=x^{2}+6$, with $\operatorname{disc}(c)=-24$.

- A and B are conjugate over $\mathbb{Z}_{(p)}$ for $p \neq 2,3$.
- $C_{1}=\left(\begin{array}{cc}-3 & 0 \\ 0 & 1\end{array}\right)$ yields a conjugating matrix over $\mathbb{Z}_{(2)}$.
. $C_{2}=\left(\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right)$ yields a conjugating matrix over $\mathbb{Z}_{(3)}$.

Failure of local-global principal

$A=\left(\begin{array}{cc}0 & -6 \\ 1 & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}0 & 2 \\ -3 & 0\end{array}\right)$ have characteristic polynomial $c(x)=x^{2}+6$, with $\operatorname{disc}(c)=-24$.

- A and B are conjugate over $\mathbb{Z}_{(p)}$ for $p \neq 2,3$.
- $C_{1}=\left(\begin{array}{cc}-3 & 0 \\ 0 & 1\end{array}\right)$ yields a conjugating matrix over $\mathbb{Z}_{(2)}$.
- $C_{2}=\left(\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right)$ yields a conjugating matrix over $\mathbb{Z}_{(3)}$.
- A and B are not conjugate over \mathbb{Z}.

Failure of local-global principal

$A=\left(\begin{array}{cc}0 & -6 \\ 1 & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}0 & 2 \\ -3 & 0\end{array}\right)$ have characteristic polynomial $c(x)=x^{2}+6$, with $\operatorname{disc}(c)=-24$.

- A and B are conjugate over $\mathbb{Z}_{(p)}$ for $p \neq 2,3$.
- $C_{1}=\left(\begin{array}{cc}-3 & 0 \\ 0 & 1\end{array}\right)$ yields a conjugating matrix over $\mathbb{Z}_{(2)}$.
- $C_{2}=\left(\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right)$ yields a conjugating matrix over $\mathbb{Z}_{(3)}$.
$\bullet A$ and B are not conjugate over \mathbb{Z}.

Theorem of Guralnick (1980): $A \sim_{\mathbb{Z}_{(p)}} B$ over for all prime ideals $p \Longleftrightarrow A \sim B$ over some finite integral extension E of \mathbb{Z}.

Failure of local-global principal

$A=\left(\begin{array}{cc}0 & -6 \\ 1 & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}0 & 2 \\ -3 & 0\end{array}\right)$ have characteristic polynomial $c(x)=x^{2}+6$, with $\operatorname{disc}(c)=-24$.

- A and B are conjugate over $\mathbb{Z}_{(p)}$ for $p \neq 2,3$.
- $C_{1}=\left(\begin{array}{cc}-3 & 0 \\ 0 & 1\end{array}\right)$ yields a conjugating matrix over $\mathbb{Z}_{(2)}$.
- $C_{2}=\left(\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right)$ yields a conjugating matrix over $\mathbb{Z}_{(3)}$.
$\bullet A$ and B are not conjugate over \mathbb{Z}.

Theorem of Guralnick (1980): $A \sim_{\mathbb{Z}_{(p)}} B$ over for all prime ideals $p \Longleftrightarrow A \sim B$ over some finite integral extension E of \mathbb{Z}.
Example:

Failure of local-global principal

$A=\left(\begin{array}{cc}0 & -6 \\ 1 & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}0 & 2 \\ -3 & 0\end{array}\right)$ have characteristic polynomial $c(x)=x^{2}+6$, with $\operatorname{disc}(c)=-24$.

- A and B are conjugate over $\mathbb{Z}_{(p)}$ for $p \neq 2,3$.
- $C_{1}=\left(\begin{array}{cc}-3 & 0 \\ 0 & 1\end{array}\right)$ yields a conjugating matrix over $\mathbb{Z}_{(2)}$.
. $C_{2}=\left(\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right)$ yields a conjugating matrix over $\mathbb{Z}_{(3)}$.
$\cdot A$ and B are not conjugate over \mathbb{Z}.

Theorem of Guralnick (1980): $A \sim_{\mathbb{Z}_{(p)}} B$ over for all prime ideals $p \Longleftrightarrow A \sim B$ over some finite integral extension E of \mathbb{Z}.

Example:

- $f(x, y)=\operatorname{det}\left(x C_{1}+y C_{2}\right)=-3 x^{2}-2 y^{2}$ realizes a unit over some extension.

Failure of local-global principal

$A=\left(\begin{array}{cc}0 & -6 \\ 1 & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}0 & 2 \\ -3 & 0\end{array}\right)$ have characteristic polynomial $c(x)=x^{2}+6$, with $\operatorname{disc}(c)=-24$.

- A and B are conjugate over $\mathbb{Z}_{(p)}$ for $p \neq 2,3$.
- $C_{1}=\left(\begin{array}{cc}-3 & 0 \\ 0 & 1\end{array}\right)$ yields a conjugating matrix over $\mathbb{Z}_{(2)}$.
- $C_{2}=\left(\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right)$ yields a conjugating matrix over $\mathbb{Z}_{(3)}$.
$\cdot A$ and B are not conjugate over \mathbb{Z}.

Theorem of Guralnick (1980): $A \sim_{\mathbb{Z}_{(p)}} B$ over for all prime ideals $p \Longleftrightarrow A \sim B$ over some finite integral extension E of \mathbb{Z}.

Example:

- $f(x, y)=\operatorname{det}\left(x C_{1}+y C_{2}\right)=-3 x^{2}-2 y^{2}$ realizes a unit over some extension.
- $f(i, 1)=1$ so $i C_{1}+C_{2}=\left(\begin{array}{cc}-3 i & 2 \\ 1 & i\end{array}\right)$ conjugates A to B.

Failure of local-global principal

$A=\left(\begin{array}{cc}0 & -6 \\ 1 & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}0 & 2 \\ -3 & 0\end{array}\right)$ have characteristic polynomial $c(x)=x^{2}+6$, with $\operatorname{disc}(c)=-24$.

- A and B are conjugate over $\mathbb{Z}_{(p)}$ for $p \neq 2,3$.
- $C_{1}=\left(\begin{array}{cc}-3 & 0 \\ 0 & 1\end{array}\right)$ yields a conjugating matrix over $\mathbb{Z}_{(2)}$.
- $C_{2}=\left(\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right)$ yields a conjugating matrix over $\mathbb{Z}_{(3)}$.
$\cdot A$ and B are not conjugate over \mathbb{Z}.

Theorem of Guralnick (1980): $A \sim_{\mathbb{Z}_{(p)}} B$ over for all prime ideals $p \Longleftrightarrow A \sim B$ over some finite integral extension E of \mathbb{Z}.

I refer to the problem of determining the algebraic extension over which locally conjugate matrices are conjugate as the conjugacy extension problem.

Failure of local-global principal

$A=\left(\begin{array}{cc}0 & -6 \\ 1 & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}0 & 2 \\ -3 & 0\end{array}\right)$ have characteristic polynomial $c(x)=x^{2}+6$, with $\operatorname{disc}(c)=-24$.

- A and B are conjugate over $\mathbb{Z}_{(p)}$ for $p \neq 2,3$.
- $C_{1}=\left(\begin{array}{cc}-3 & 0 \\ 0 & 1\end{array}\right)$ yields a conjugating matrix over $\mathbb{Z}_{(2)}$.
- $C_{2}=\left(\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right)$ yields a conjugating matrix over $\mathbb{Z}_{(3)}$.
$\cdot A$ and B are not conjugate over \mathbb{Z}.

Theorem of Guralnick (1980): $A \sim_{\mathbb{Z}_{(p)}} B$ over for all prime ideals $p \Longleftrightarrow A \sim B$ over some finite integral extension E of \mathbb{Z}.

Example:

- $f(x, y)=\operatorname{det}\left(x C_{1}+y C_{2}\right)=-3 x^{2}-2 y^{2}$ realizes a unit over some extension.
- $f(i, 1)=1$ so $i C_{1}+C_{2}=\left(\begin{array}{cc}-3 i & 2 \\ 1 & i\end{array}\right)$ conjugates A to B.

Correspondence for an integral domain R

Correspondence for an integral domain R

- The Latimer and MacDuffee correspondence can be generalized to hold over any integral domain R.

Correspondence for an integral domain R

- The Latimer and MacDuffee correspondence can be generalized to hold over any integral domain R.

For $f=\prod_{i=1}^{m} f_{i}$, a fractional $R[\alpha]$-ideal is an $R[\alpha]$-module within
$\operatorname{Frac}(R)\left(\alpha_{i}\right)$ which is also a free R-module of rank $\operatorname{deg}(f)$.
$i=1$

Correspondence for an integral domain R

- The Latimer and MacDuffee correspondence can be generalized to hold over any integral domain R.
- Let $\mathscr{J}_{R\lceil\alpha\rceil}$ denote the set of fractional $R[\alpha]$-ideals.

Correspondence for an integral domain R

- The Latimer and MacDuffee correspondence can be generalized to hold over any integral domain R.
- Let $\mathscr{J}_{R\lceil\alpha\rceil}$ denote the set of fractional $R[\alpha]$-ideals.
- There is a bijection

$$
\begin{aligned}
\psi_{R}: \mathscr{M}_{f} /_{\sim R} & \left.\rightarrow \mathscr{J}_{R[\alpha]}\right]_{\cong_{R[\alpha]}} \\
{[A]_{R} } & \mapsto[I]_{R[\alpha]}
\end{aligned}
$$

Correspondence for an integral domain R

- The Latimer and MacDuffee correspondence can be generalized to hold over any integral domain R.
- Let $\mathscr{J}_{R[\alpha]}$ denote the set of fractional $R[\alpha]$-ideals.
- There is a bijection

$$
\begin{aligned}
\psi_{R}: \mathscr{M}_{f} /_{\sim R} & \rightarrow \mathscr{J}_{R[\alpha]} \overbrace{\cong_{R[\alpha]}} \\
{[A]_{R} } & \mapsto[I]_{R[\alpha]}
\end{aligned}
$$

- For $A \in \mathbb{Z}^{n \times n}$ and $\mathbb{Z} \subseteq R$, we have that $\psi_{R}([A])=R \otimes_{\mathbb{Z}} \psi_{\mathbb{Z}}([A])$.

Correspondence for an integral domain R

- The Latimer and MacDuffee correspondence can be generalized to hold over any integral domain R.
- Let $\mathscr{J}_{R\lceil\alpha\rceil}$ denote the set of fractional $R[\alpha]$-ideals.
- There is a bijection

$$
\begin{aligned}
\psi_{R}: \mathscr{M}_{f} /_{\sim R} & \left.\rightarrow \mathscr{J}_{R[\alpha]}\right]_{\cong_{R[\alpha]}} \\
{[A]_{R} } & \mapsto[I]_{R[\alpha]}
\end{aligned}
$$

$$
\begin{gathered}
\text { If }[A]_{\sim \mathbb{Z}} \leftrightarrow \\
\text { then }
\end{gathered}
$$

$[A]_{\sim R} \leftrightarrow[R \otimes I]=\left[\bigoplus p_{i}(\tilde{\alpha}) R\right]$ where the form of $\tilde{\alpha}$ depends on the factorization of f in $R[x]$

Example: f factors further

Example: f factors further

Let $f=x^{4}-2$ and α be a root. Let $R=\mathbb{Z}[\sqrt[4]{2}]$. Over $R[x]$, we have that f factors as $f=\left(x^{2}+\sqrt{2}\right)(x-\sqrt[4]{2})(x+\sqrt[4]{2})$.

Example: f factors further

Let $f=x^{4}-2$ and α be a root. Let $R=\mathbb{Z}[\sqrt[4]{2}]$. Over $R[x]$, we have that f factors as $f=\left(x^{2}+\sqrt{2}\right)(x-\sqrt[4]{2})(x+\sqrt[4]{2})$.

Let α_{1} denote a root of $x^{2}+\sqrt{2}$.

Example: f factors further

Let $f=x^{4}-2$ and α be a root. Let $R=\mathbb{Z}[\sqrt[4]{2}]$. Over $R[x]$, we have that f factors as $f=\left(x^{2}+\sqrt{2}\right)(x-\sqrt[4]{2})(x+\sqrt[4]{2})$.

Let α_{1} denote a root of $x^{2}+\sqrt{2}$.
$\left[C_{f}\right]_{\mathbb{Z}} \leftrightarrow[\mathbb{Z}[\alpha]]_{\mathbb{Z}[\alpha]}=\left[1 \mathbb{Z} \oplus \alpha \mathbb{Z} \oplus \alpha^{2} \mathbb{Z} \oplus \alpha^{3} \mathbb{Z}\right]_{\mathbb{Z}[\alpha]}$ while
$\left[C_{f}\right]_{R} \leftrightarrow\left[R \otimes_{\mathbb{Z}} \mathbb{Z}[\alpha]\right]_{R[\alpha]}$

Example: f factors further

Let $f=x^{4}-2$ and α be a root. Let $R=\mathbb{Z}[\sqrt[4]{2}]$. Over $R[x]$, we have that f factors as $f=\left(x^{2}+\sqrt{2}\right)(x-\sqrt[4]{2})(x+\sqrt[4]{2})$.

Let α_{1} denote a root of $x^{2}+\sqrt{2}$.
$\left[C_{f}\right]_{\mathbb{Z}} \leftrightarrow[\mathbb{Z}[\alpha]]_{\mathbb{Z}[\alpha]}=\left[1 \mathbb{Z} \oplus \alpha \mathbb{Z} \oplus \alpha^{2} \mathbb{Z} \oplus \alpha^{3} \mathbb{Z}\right]_{\mathbb{Z}[\alpha]}$ while
$\left[C_{f}\right]_{R} \leftrightarrow\left[R \otimes_{\mathbb{Z}} \mathbb{Z}[\alpha]\right]_{R[\alpha]}$

Example: f factors further

Let $f=x^{4}-2$ and α be a root. Let $R=\mathbb{Z}[\sqrt[4]{2}]$. Over $R[x]$, we have that f factors as $f=\left(x^{2}+\sqrt{2}\right)(x-\sqrt[4]{2})(x+\sqrt[4]{2})$.

Let α_{1} denote a root of $x^{2}+\sqrt{2}$.

$$
\begin{array}{|l}
{\left[C_{f}\right]_{\mathbb{Z}} \leftrightarrow[\mathbb{Z}[\alpha]]_{\mathbb{Z}[\alpha]}=\left[1 \mathbb{Z} \oplus \alpha \mathbb{Z} \oplus \alpha^{2} \mathbb{Z} \oplus \alpha^{3} \mathbb{Z}\right]_{\mathbb{Z}[\alpha]} \text { while }} \\
{\left[C_{f}\right]_{R} \leftrightarrow\left[R \otimes_{\mathbb{Z}} \mathbb{Z}[\alpha]\right]_{R[\alpha]}} \\
\quad \quad=\left[(1,1,1) R \oplus\left(\alpha_{1}, \sqrt[4]{2}_{2}^{2},-\sqrt[4]{2}\right) R \oplus \ldots \oplus\left(\alpha_{1}^{3}, \sqrt[4]{2}^{3},-\sqrt[4]{2}^{3}\right) R\right]_{R[\alpha]}
\end{array}
$$

Algorithm if $R \supseteq \mathbb{Z}$

Input: Integral matrices A and B and a ring R.
Tests if $A \sim_{R} B$ and if yes, returns $C \in \mathrm{GL}_{n}(R)$ with $C^{-1} A C=B$.

Algorithm if $R \supseteq \mathbb{Z}$

Input: Integral matrices A and B and a ring R.
Tests if $A \sim_{R} B$ and if yes, returns $C \in \mathrm{GL}_{n}(R)$ with $C^{-1} A C=B$.

- Step 1: From A and B, find $R \otimes I$ and $R \otimes J$.

Algorithm if $R \supseteq \mathbb{Z}$

$$
\begin{aligned}
& \text { Let } f=x^{2}+23, K:=\mathbb{Q}(\alpha)=\mathbb{Q}[x] /(f), \\
& L:=\mathbb{Q}[x] /\left(x^{3}+6 x^{2}+9 x-23\right) \text { and } R=\mathcal{O}_{L} .
\end{aligned}
$$

- Step 1: From A and B, find $R \otimes I$ and $R \otimes J$.

Algorithm if $R \supseteq \mathbb{Z}$

$$
\begin{aligned}
& \text { Let } f=x^{2}+23, K:=\mathbb{Q}(\alpha)=\mathbb{Q}[x] /(f), \\
& L:=\mathbb{Q}[x] /\left(x^{3}+6 x^{2}+9 x-23\right) \text { and } R=\mathcal{O}_{L} .
\end{aligned}
$$

- Step 1: From A and B, find $R \otimes I$ and $R \otimes J$.

$$
\begin{aligned}
& A:=\left(\begin{array}{cc}
-1 & 2 \\
-12 & 1
\end{array}\right) \leftrightarrow R \otimes I:=2 R \oplus(1+\alpha) R \\
& \text { and } \\
& B:=\left(\begin{array}{cc}
1 & 4 \\
-6 & -1
\end{array}\right) \leftrightarrow R \otimes J:=4 R \oplus(-1+\alpha) R
\end{aligned}
$$

Algorithm if $\mathbb{Z} \subseteq R$

$$
\begin{aligned}
& \text { Let } f=x^{2}+23, K:=\mathbb{Q}(\alpha)=\mathbb{Q}[x] /(f), \\
& L:=\mathbb{Q}[x] /\left(x^{3}+6 x^{2}+9 x-23\right) \text { and } R=\mathcal{O}_{L} .
\end{aligned}
$$

- Step 1: From A and B, find $R \otimes I$ and $R \otimes J$.
- Step 2: Find multiplicator ring of $R \otimes I$ and $R \otimes J$. If not the same, $A \varkappa_{R} B$.

Algorithm if $\mathbb{Z} \subseteq R$

$$
\begin{aligned}
& \text { Let } f=x^{2}+23, K:=\mathbb{Q}(\alpha)=\mathbb{Q}[x] /(f), \\
& L:=\mathbb{Q}[x] /\left(x^{3}+6 x^{2}+9 x-23\right) \text { and } R=\mathcal{O}_{L} .
\end{aligned}
$$

- Step 1: From A and B, find $R \otimes I$ and $R \otimes J$.
- Step 2: Find multiplicator ring of $R \otimes I$ and $R \otimes J$. If not the same, $A \varkappa_{R} B$.

$$
\begin{aligned}
\mathcal{O}_{K} & =(I: I)=(J: J) \\
\mathscr{O} & :=(R \otimes I: R \otimes I)=R \otimes(I: I) \\
& =1 R \oplus\left(\frac{1+\alpha}{2}\right) R
\end{aligned}
$$

Algorithm if $\mathbb{Z} \subseteq R$

$$
\begin{aligned}
& \text { Let } f=x^{2}+23, K:=\mathbb{Q}(\alpha)=\mathbb{Q}[x] /(f), \\
& L:=\mathbb{Q}[x] /\left(x^{3}+6 x^{2}+9 x-23\right) \text { and } R=\mathcal{O}_{L} .
\end{aligned}
$$

- Step 1: From A and B, find $R \otimes I$ and $R \otimes J$.
- Step 2: Find multiplicator ring of $R \otimes I$ and $R \otimes J$. If not the same, $A \varkappa_{R} B$.

$$
\begin{aligned}
\mathcal{O}_{K} & =(I: I)=(J: J) \\
\mathcal{O} & :=(R \otimes I: R \otimes I)=R \otimes(I: I) \\
& =1 R \oplus\left(\frac{1+\alpha}{2}\right) R
\end{aligned}
$$

Note: A and B are locally conjugate iff $\mathbb{Z}_{(p)} \otimes I \cong_{\mathbb{Z}_{(p)}[\alpha]} \mathbb{Z}_{(p)} \otimes J$ iff $(I: I)=(J: J)$.

Algorithm if $\mathbb{Z} \subseteq R$

$$
\begin{aligned}
& \text { Let } f=x^{2}+23, K:=\mathbb{Q}(\alpha)=\mathbb{Q}[x] /(f), \\
& L:=\mathbb{Q}[x] /\left(x^{3}+6 x^{2}+9 x-23\right) \text { and } R=\mathcal{O}_{L} .
\end{aligned}
$$

- Step 1: From A and B, find $R \otimes I$ and $R \otimes J$.
- Step 2: Find multiplicator ring of $R \otimes I$ and $R \otimes J$. If not the same, $A \varkappa_{R} B$.
- Step 3: Test if $R \otimes(I: J)$ principal. If not, $A \varkappa_{R} B$. Otherwise, compute change of basis.

Algorithm if $\mathbb{Z} \subseteq R$

$$
\begin{aligned}
& \text { Let } f=x^{2}+23, K:=\mathbb{Q}(\alpha)=\mathbb{Q}[x] /(f), \\
& L:=\mathbb{Q}[x] /\left(x^{3}+6 x^{2}+9 x-23\right) \text { and } R=\mathcal{O}_{L} .
\end{aligned}
$$

- Step 1: From A and B, find $R \otimes I$ and $R \otimes J$.
- Step 2: Find multiplicator ring of $R \otimes I$ and $R \otimes J$. If not the same, $A \varkappa_{R} B$.
- Step 3: Test if $R \otimes(I: J)$ principal. If not, $A \varkappa_{R} B$. Otherwise, compute change of basis.

Algorithm if $\mathbb{Z} \subseteq R$

$$
\begin{aligned}
& \text { Let } f=x^{2}+23, K:=\mathbb{Q}(\alpha)=\mathbb{Q}[x] /(f), \\
& L:=\mathbb{Q}[x] /\left(x^{3}+6 x^{2}+9 x-23\right) \text { and } R=\mathcal{O}_{L} .
\end{aligned}
$$

- Step 1: From A and B, find $R \otimes I$ and $R \otimes J$.
- Step 2: Find multiplicator ring of $R \otimes I$ and $R \otimes J$. If not the same, $A \varkappa_{R} B$.
- Step 3: Test if $R \otimes(I: J)$ principal. If not, $A \varkappa_{R} B$.
$\ln \mathcal{O}, R \otimes(I: J)=(\gamma)$. Otherwise, compute change of basis.

Algorithm if $\mathbb{Z} \subseteq R$

$$
\begin{aligned}
& \text { Let } f=x^{2}+23, K:=\mathbb{Q}(\alpha)=\mathbb{Q}[x] /(f), \\
& L:=\mathbb{Q}[x] /\left(x^{3}+6 x^{2}+9 x-23\right) \text { and } R=\mathcal{O}_{L} .
\end{aligned}
$$

- Step 1: From A and B, find $R \otimes I$ and $R \otimes J$.
- Step 2: Find multiplicator ring of $R \otimes I$ and $R \otimes J$. If not the same, $A \varkappa_{R} B$.
- Step 3: Test if $R \otimes(I: J)$ principal. If not, $A \varkappa_{R} B$. Otherwise, compute change of basis.

For a particular \mathbb{Z}-basis $\left\{\mathscr{B}_{1}, \mathscr{B}_{2}, \mathscr{B}_{3}\right\}$ of R, we find that
$C=\left(\begin{array}{cc}-\mathscr{B}_{1}+\mathscr{B}_{3} & -\mathscr{B}_{1}-\mathscr{B}_{2} \\ 2 \mathscr{B}_{1}+3 \mathscr{B}_{2}+\mathscr{B}_{3} & -2 \mathscr{B}_{1}+2 \mathscr{B}_{3}\end{array}\right)$
has determinant in R^{\times}and conjugates A to B.

Implementation of Algorithm

Implementation of Algorithm

- Implemented algorithm for $R=\mathcal{O}_{L}$ and for matrices in \mathscr{M}_{f} with f irreducible using subroutine IsPrincipal in Magma.

Implementation of Algorithm

- Implemented algorithm for $R=\mathcal{O}_{L}$ and for matrices in \mathscr{M}_{f} with f irreducible using subroutine IsPrincipal in Magma.
- IsPrincipal is not valid for objects within a $\operatorname{Frac}(R)$-algebra of the form $\prod_{i=1}^{m} \operatorname{Frac}(R)\left(\alpha_{i}\right)$ unless $R=\mathbb{Z}$ (or $m=1$).

Hilbert Class Fields

- The Hilbert class field of a number field K, denoted $\operatorname{HCF}(K)$, is the maximal unramified abelian extension of K.

Hilbert Class Fields

- The Hilbert class field of a number field K, denoted $\operatorname{HCF}(K)$, is the maximal unramified abelian extension of K.
- Principal ideal theorem: Let L denote the Hilbert class field of K. Every fractional \mathcal{O}_{K}-ideal is principal in \mathcal{O}_{L}.

Hilbert Class Fields

- The Hilbert class field of a number field K, denoted $\operatorname{HCF}(K)$, is the maximal unramified abelian extension of K.
- Principal ideal theorem: Let L denote the Hilbert class field of K. Every fractional \mathcal{O}_{K}-ideal is principal in \mathcal{O}_{L}.
- $\mathscr{M}_{f} \leadsto K:=\mathbb{Q}(\alpha)=\mathbb{Q}[x] /(f) \mapsto L=\operatorname{HCF}(K)$

Hilbert Class Fields

- The Hilbert class field of a number field K, denoted $\operatorname{HCF}(K)$, is the maximal unramified abelian extension of K.
- Principal ideal theorem: Let L denote the Hilbert class field of K. Every fractional \mathcal{O}_{K}-ideal is principal in \mathcal{O}_{L}.
- $\mathscr{M}_{f} \leadsto K:=\mathbb{Q}(\alpha)=\mathbb{Q}[x] /(f) \mapsto L=\operatorname{HCF}(K)$
- However, since $\alpha \in \mathcal{O}_{L}, f$ factors further over $\mathcal{O}_{L}[x]$.

Hilbert class field does not always solve the conjugacy extension problem

$$
\begin{aligned}
& \text { Let } f=x^{2}+5 \text { and } K=\mathbb{Q}(\alpha) \cong \mathbb{Q}[x] /(f) \\
& \qquad A=\left(\begin{array}{ll}
-1 & 2 \\
-3 & 1
\end{array}\right) \leftrightarrow I=2 \mathbb{Z} \oplus(\alpha+1) \mathbb{Z} \text { (not principal) }
\end{aligned}
$$

Hilbert class field does not always solve

 the conjugacy extension problem$$
\begin{aligned}
& \text { Let } f=x^{2}+5 \text { and } K=\mathbb{Q}(\alpha) \cong \mathbb{Q}[x] /(f) \\
& \qquad A=\left(\begin{array}{ll}
-1 & 2 \\
-3 & 1
\end{array}\right) \leftrightarrow I=2 \mathbb{Z} \oplus(\alpha+1) \mathbb{Z}(\text { not principal })
\end{aligned}
$$

- Let L denote the Hilbert class field of K and $R=\mathcal{O}_{L}$. The R-conjugacy class of A corresponds to $R \otimes I=(2,2) R \oplus(\alpha+1,-\alpha+1) R$.

Hilbert class field does not always solve

 the conjugacy extension problem$$
\begin{aligned}
& \text { Let } f=x^{2}+5 \text { and } K=\mathbb{Q}(\alpha) \cong \mathbb{Q}[x] /(f) \\
& \qquad A=\left(\begin{array}{ll}
-1 & 2 \\
-3 & 1
\end{array}\right) \leftrightarrow I=2 \mathbb{Z} \oplus(\alpha+1) \mathbb{Z} \text { (not principal) }
\end{aligned}
$$

- Let L denote the Hilbert class field of K and $R=\mathcal{O}_{L}$. The R-conjugacy class of A corresponds to $R \otimes I=(2,2) R \oplus(\alpha+1,-\alpha+1) R$.
- Letting $\left\{\mathscr{B}_{1}, \ldots, \mathscr{B}_{4}\right\}$ denote a \mathbb{Z}-basis for R, we have $2 R \oplus(\alpha+1) R=2 R \oplus(-\alpha+1) R=(g)$ where $g=\mathscr{B}_{1}-2 \mathscr{B}_{1}-\mathscr{B}_{4}$.

Hilbert class field does not always solve the conjugacy extension problem

Hilbert class field does not always solve the conjugacy extension problem

If $R \otimes I=\left(\gamma_{1}, \gamma_{2}\right) R[(\alpha,-\alpha)]$ for a generator
$\left(\gamma_{1}, \gamma_{2}\right) \in L(\alpha) \times L(-\alpha)=L \times L$, there are $\left(r_{i}, r_{i}\right) \in R$ with

Hilbert class field does not always solve the conjugacy extension problem

If $R \otimes I=\left(\gamma_{1}, \gamma_{2}\right) R[(\alpha,-\alpha)]$ for a generator
$\left(\gamma_{1}, \gamma_{2}\right) \in L(\alpha) \times L(-\alpha)=L \times L$, there are $\left(r_{i}, r_{i}\right) \in R$ with

$$
\begin{aligned}
& (2,2)\left(r_{1}, r_{1}\right)+(\alpha+1,-\alpha+1)\left(r_{2}, r_{2}\right)=\left(\gamma_{1}, \gamma_{2}\right) \\
& (2,2)\left(r_{3}, r_{3}\right)+(\alpha+1,-\alpha+1)\left(r_{4}, r_{4}\right)=\left(\gamma_{1} \alpha,-\gamma_{2} \alpha\right)
\end{aligned}
$$

Hilbert class field does not always solve the conjugacy extension problem

If $R \otimes I=\left(\gamma_{1}, \gamma_{2}\right) R[(\alpha,-\alpha)]$ for a generator
$\left(\gamma_{1}, \gamma_{2}\right) \in L(\alpha) \times L(-\alpha)=L \times L$, there are $\left(r_{i}, r_{i}\right) \in R$ with

$$
\begin{aligned}
& (2,2)\left(r_{1}, r_{1}\right)+(\alpha+1,-\alpha+1)\left(r_{2}, r_{2}\right)=\left(\gamma_{1}, \gamma_{2}\right) \\
& (2,2)\left(r_{3}, r_{3}\right)+(\alpha+1,-\alpha+1)\left(r_{4}, r_{4}\right)=\left(\gamma_{1} \alpha,-\gamma_{2} \alpha\right)
\end{aligned}
$$

Hilbert class field does not always solve the conjugacy extension problem

If $R \otimes I=\left(\gamma_{1}, \gamma_{2}\right) R[(\alpha,-\alpha)]$ for a generator
$\left(\gamma_{1}, \gamma_{2}\right) \in L(\alpha) \times L(-\alpha)=L \times L$, there are $\left(r_{i}, r_{i}\right) \in R$ with

$$
\begin{aligned}
& (2,2)\left(r_{1}, r_{1}\right)+(\alpha+1,-\alpha+1)\left(r_{2}, r_{2}\right)=\left(\gamma_{1}, \gamma_{2}\right) \\
& (2,2)\left(r_{3}, r_{3}\right)+(\alpha+1,-\alpha+1)\left(r_{4}, r_{4}\right)=\left(\gamma_{1} \alpha,-\gamma_{2} \alpha\right)
\end{aligned}
$$

Hilbert class field does not always solve the conjugacy extension problem

If $R \otimes I=\left(\gamma_{1}, \gamma_{2}\right) R[(\alpha,-\alpha)]$ for a generator
$\left(\gamma_{1}, \gamma_{2}\right) \in L(\alpha) \times L(-\alpha)=L \times L$, there are $\left(r_{i}, r_{i}\right) \in R$ with

$$
\begin{aligned}
& (2,2)\left(r_{1}, r_{1}\right)+(\alpha+1,-\alpha+1)\left(r_{2}, r_{2}\right)=\left(\gamma_{1}, \gamma_{2}\right) \\
& (2,2)\left(r_{3}, r_{3}\right)+(\alpha+1,-\alpha+1)\left(r_{4}, r_{4}\right)=\left(\gamma_{1} \alpha,-\gamma_{2} \alpha\right)
\end{aligned}
$$

(change of basis also must have unit determinant)

Hilbert class field does not always solve the conjugacy extension problem

If $R \otimes I=\left(\gamma_{1}, \gamma_{2}\right) R[(\alpha,-\alpha)]$ for a generator
$\left(\gamma_{1}, \gamma_{2}\right) \in L(\alpha) \times L(-\alpha)=L \times L$, there are $\left(r_{i}, r_{i}\right) \in R$ with

$$
\begin{aligned}
& (2,2)\left(r_{1}, r_{1}\right)+(\alpha+1,-\alpha+1)\left(r_{2}, r_{2}\right)=\left(\gamma_{1}, \gamma_{2}\right) \\
& (2,2)\left(r_{3}, r_{3}\right)+(\alpha+1,-\alpha+1)\left(r_{4}, r_{4}\right)=\left(\gamma_{1} \alpha,-\gamma_{2} \alpha\right)
\end{aligned}
$$

Hilbert class field does not always solve the conjugacy extension problem

If $R \otimes I=\left(\gamma_{1}, \gamma_{2}\right) R[(\alpha,-\alpha)]$ for a generator
$\left(\gamma_{1}, \gamma_{2}\right) \in L(\alpha) \times L(-\alpha)=L \times L$, there are $\left(r_{i}, r_{i}\right) \in R$ with

$$
\begin{aligned}
& (2,2)\left(r_{1}, r_{1}\right)+(\alpha+1,-\alpha+1)\left(r_{2}, r_{2}\right)=\left(\gamma_{1}, \gamma_{2}\right) \\
& (2,2)\left(r_{3}, r_{3}\right)+(\alpha+1,-\alpha+1)\left(r_{4}, r_{4}\right)=\left(\gamma_{1} \alpha,-\gamma_{2} \alpha\right)
\end{aligned}
$$

Hilbert class field does not always solve the conjugacy extension problem

$$
\begin{aligned}
& 2 R \oplus(\alpha+1) R=2 R \oplus(-\alpha+1) R=(g) \text { where } \\
& g=\mathscr{B}_{1}-2 \mathscr{B}_{1}-\mathscr{B}_{4} .
\end{aligned}
$$

We may assume $\gamma_{1}=g$ and $\gamma_{2}=g u$ for some $u \in R^{\times}$.

Hilbert class field does not always solve the conjugacy extension problem

$$
\begin{aligned}
& 2 R \oplus(\alpha+1) R=2 R \oplus(-\alpha+1) R=(g) \text { where } \\
& g=\mathscr{B}_{1}-2 \mathscr{B}_{1}-\mathscr{B}_{4} .
\end{aligned}
$$

We may assume $\gamma_{1}=g$ and $\gamma_{2}=g u$ for some $u \in R^{\times}$. There is no unit u so that there is a solution over R to

Hilbert class field does not always solve the conjugacy extension problem

$$
\begin{aligned}
& 2 R \oplus(\alpha+1) R=2 R \oplus(-\alpha+1) R=(g) \text { where } \\
& g=\mathscr{B}_{1}-2 \mathscr{B}_{1}-\mathscr{B}_{4} .
\end{aligned}
$$

We may assume $\gamma_{1}=g$ and $\gamma_{2}=g u$ for some $u \in R^{\times}$.
There is no unit u so that there is a solution over R to
$(2,2)\left(r_{1}, r_{1}\right)+(\alpha+1,-\alpha+1)\left(r_{2}, r_{2}\right)=(g, g u)$
$(2,2)\left(r_{3}, r_{3}\right)+(\alpha+1,-\alpha+1)\left(r_{4}, r_{4}\right)=(g \alpha,-g u \alpha)$.

Hilbert class field does not always solve the conjugacy extension problem

$$
\begin{aligned}
& 2 R \oplus(\alpha+1) R=2 R \oplus(-\alpha+1) R=(g) \text { where } \\
& g=\mathscr{B}_{1}-2 \mathscr{B}_{1}-\mathscr{B}_{4} .
\end{aligned}
$$

We may assume $\gamma_{1}=g$ and $\gamma_{2}=g u$ for some $u \in R^{\times}$.
There is no unit u so that there is a solution over R to
$(2,2)\left(r_{1}, r_{1}\right)+(\alpha+1,-\alpha+1)\left(r_{2}, r_{2}\right)=(g, g u)$
$(2,2)\left(r_{3}, r_{3}\right)+(\alpha+1,-\alpha+1)\left(r_{4}, r_{4}\right)=(g \alpha,-g u \alpha)$.
Then $(2,2) R \oplus(\alpha+1,-\alpha+1) R$ is not principal and so $A \varkappa_{R} C_{f}$ for R the ring of integers of the Hilbert class field of K.

Subfields of the Hilbert class field

Subfields of the Hilbert class field

To avoid the difficulty that arises when f factors further, we instead test whether there is R, the ring of integers of a subfield of the Hilbert class field, such that:

Subfields of the Hilbert class field

To avoid the difficulty that arises when f factors further, we instead test whether there is R, the ring of integers of a subfield of the Hilbert class field, such that:

- f is irreducible in $R[x]$

Subfields of the Hilbert class field

To avoid the difficulty that arises when f factors further, we instead test whether there is R, the ring of integers of a subfield of the Hilbert class field, such that:

- f is irreducible in $R[x]$
- $(I: J)$ is principal in R

Subfields of the Hilbert class field

f	$\operatorname{disc}(f)$	h_{K}	A	$A \sim \mathcal{C}_{f}$ over subfield of HCF?
$x^{2}-x+4$	$-3 \cdot 5$	2	$\left(\begin{array}{cc}-1 & 2 \\ -3 & 2\end{array}\right)$	$x^{2}+2 x+4$
$x^{2}+5$	$-2^{2} \cdot 5$	2	$\left(\begin{array}{cc}-1 & 2 \\ -3 & 1\end{array}\right)$	No
$x^{2}+10$	$-2^{3} \cdot 5$	2	$\left(\begin{array}{cc}0 & 2 \\ -5 & 0\end{array}\right)$	$x^{2}+2$
$x^{2}-x+13$	$-3 \cdot 17$	2	$\left(\begin{array}{cc}-1 & 3 \\ -5 & 2\end{array}\right)$	$x^{2}+8 x+19$
$x^{2}+13$	$-2^{2} \cdot 13$	2	$\left(\begin{array}{cc}-1 & 2 \\ -7 & 1\end{array}\right)$	No
$x^{2}-x+6$	-23	3	$\left(\begin{array}{cc}0 & 2 \\ -3 & 1\end{array}\right)$	$x^{3}+6 x^{2}+9 x-23$
$x^{2}-x+8$	-31	3	$\left(\begin{array}{cc}-1 & 2 \\ -5 & 2\end{array}\right)$	No
$x^{2}+17$	$-2^{2} \cdot 17$	4	$\left(\begin{array}{rr}-2 & 3 \\ -7 & 2\end{array}\right)$	No
$x^{2}+21$	$-2^{2} \cdot 3 \cdot 7$	4	$\left(\begin{array}{rr}-2 & 5 \\ -5 & 2\end{array}\right)$	Yes

Subfields of the Hilbert class field

f	$\operatorname{disc}(f)$	h_{K}	A	$A \sim \mathcal{C}_{f}$ ove	subfield of HCF?
$x^{2}-x+4$	-3.5	2	$\left(\begin{array}{ll}-1 & 2 \\ -3 & 2\end{array}\right)$	$x^{2}+2 x+4$	
$x^{2}+5$	$-2^{2} \cdot 5$	2	$\left(\begin{array}{ll}-1 & 2 \\ -3 & 1\end{array}\right)$	A is chosen to correspond to a non-principal $\mathbb{Z}[\alpha]$-ideal	No
$x^{2}+10$	$-2^{3} \cdot 5$	2	$\left(\begin{array}{cc}0 & 2 \\ -5 & 0\end{array}\right)$		$+2$
$x^{2}-x+13$	-3 17	2	$\left(\begin{array}{ll}-1 & 3 \\ -5 & 2\end{array}\right)$	$x^{2}+8 x+19$	
$x^{2}+13$	$-2^{2} \cdot 13$	2	$\left(\begin{array}{ll}-1 & 2 \\ -7 & 1\end{array}\right)$	No	
$x^{2}-x+6$	-23	3	$\left(\begin{array}{cc}0 & 2 \\ -3 & 1\end{array}\right)$	$x^{3}+6 x^{2}+9 x-23$	
$x^{2}-x+8$	-31	3	$\left(\begin{array}{ll}-1 & 2 \\ -5 & 2\end{array}\right)$	No	
$x^{2}+17$	$-2^{2} \cdot 17$	4	$\left(\begin{array}{ll}-2 & 3 \\ -7 & 2\end{array}\right)$	No	
$x^{2}+21$	$-2^{2} \cdot 3 \cdot 7$	4	$\left(\begin{array}{ll}-2 & 5 \\ -5 & 2\end{array}\right)$	Yes	

Subfields of the Hilbert class field

f	$\operatorname{disc}(f)$	h_{K}	A	$A \sim \mathcal{C}_{f}$ over subfield of HCF?
$x^{2}-x+4$	$-3 \cdot 5$	2	$\left(\begin{array}{cc}-1 & 2 \\ -3 & 2\end{array}\right)$	$x^{2}+2 x+4$
$x^{2}+5$	$-2^{2} \cdot 5$	2	$\left(\begin{array}{cc}-1 & 2 \\ -3 & 1\end{array}\right)$	No
$x^{2}+10$	$-2^{3} \cdot 5$	2	$\left(\begin{array}{cc}0 & 2 \\ -5 & 0\end{array}\right)$	$x^{2}+2$
$x^{2}-x+13$	$-3 \cdot 17$	2	$\left(\begin{array}{cc}-1 & 3 \\ -5 & 2\end{array}\right)$	$x^{2}+8 x+19$
$x^{2}+13$	$-2^{2} \cdot 13$	2	$\left(\begin{array}{cc}-1 & 2 \\ -7 & 1\end{array}\right)$	No
$x^{2}-x+6$	-23	3	$\left(\begin{array}{cc}0 & 2 \\ -3 & 1\end{array}\right)$	$x^{3}+6 x^{2}+9 x-23$
$x^{2}-x+8$	-31	3	$\left(\begin{array}{cc}-1 & 2 \\ -5 & 2\end{array}\right)$	No
$x^{2}+17$	$-2^{2} \cdot 17$	4	$\left(\begin{array}{rr}-2 & 3 \\ -7 & 2\end{array}\right)$	No
$x^{2}+21$	$-2^{2} \cdot 3 \cdot 7$	4	$\left(\begin{array}{rr}-2 & 5 \\ -5 & 2\end{array}\right)$	Yes

Subfields of the Hilbert class field

f	$\operatorname{disc}(f)$	h_{K}	A	$A \sim \mathcal{C}_{f}$ over subfield of HCF?
$x^{2}-x+4$	-3.5	2	$\left(\begin{array}{ll}-1 & 2 \\ -3 & 2\end{array}\right)$	- $x^{2}+2 x+4$
$x^{2}+5$	$-2^{2} \cdot 5$	2	$A \sim_{R} C_{f}$ for R the ring of integers of$L=\mathbb{Q}[x] /\left(x^{2}+2 x+4\right)$	R the ring of No
$x^{2}+10$	$-2^{3} \cdot 5$	2		$\begin{array}{l\|l} 2 \\ \left.x^{2}+2 x+4\right) & \end{array}$
$x^{2}-x+13$	-3 17	2		$\xrightarrow{-} 8 x+19$
$x^{2}+13$	$-2^{2} \cdot 13$	2	$\left(\begin{array}{ll}-1 & 2 \\ -7 & 1\end{array}\right)$	No
$x^{2}-x+6$	-23	3	$\left(\begin{array}{cc}0 & 2 \\ -3 & 1\end{array}\right)$	$x^{3}+6 x^{2}+9 x-23$
$x^{2}-x+8$	-31	3	$\left(\begin{array}{ll}-1 & 2 \\ -5 & 2\end{array}\right)$	No
$x^{2}+17$	$-2^{2} \cdot 17$	4	$\left(\begin{array}{ll}-2 & 3 \\ -7 & 2\end{array}\right)$	No
$x^{2}+21$	$-2^{2} \cdot 3 \cdot 7$	4	$\left(\begin{array}{ll}-2 & 5 \\ -5 & 2\end{array}\right)$	Yes

Subfields of the Hilbert class field

f	$\operatorname{disc}(f)$	h_{K}	A	$A \sim \mathcal{C}_{f}$ over subfield of HCF?
$x^{2}-x+4$	$-3 \cdot 5$	2	$\left(\begin{array}{cc}-1 & 2 \\ -3 & 2\end{array}\right)$	$x^{2}+2 x+4$
$x^{2}+5$	$-2^{2} \cdot 5$	2	$\left(\begin{array}{cc}-1 & 2 \\ -3 & 1\end{array}\right)$	No
$x^{2}+10$	$-2^{3} \cdot 5$	2	$\left(\begin{array}{cc}0 & 2 \\ -5 & 0\end{array}\right)$	$x^{2}+2$
$x^{2}-x+13$	$-3 \cdot 17$	2	$\left(\begin{array}{cc}-1 & 3 \\ -5 & 2\end{array}\right)$	$x^{2}+8 x+19$
$x^{2}+13$	$-2^{2} \cdot 13$	2	$\left(\begin{array}{cc}-1 & 2 \\ -7 & 1\end{array}\right)$	No
$x^{2}-x+6$	-23	3	$\left(\begin{array}{cc}0 & 2 \\ -3 & 1\end{array}\right)$	$x^{3}+6 x^{2}+9 x-23$
$x^{2}-x+8$	-31	3	$\left(\begin{array}{cc}-1 & 2 \\ -5 & 2\end{array}\right)$	No
$x^{2}+17$	$-2^{2} \cdot 17$	4	$\left(\begin{array}{rr}-2 & 3 \\ -7 & 2\end{array}\right)$	No
$x^{2}+21$	$-2^{2} \cdot 3 \cdot 7$	4	$\left(\begin{array}{rr}-2 & 5 \\ -5 & 2\end{array}\right)$	Yes

Example: Generalized method

$$
\begin{aligned}
& \text { Let } f=x^{2}+5 \text { and } K=\mathbb{Q}(\alpha) \cong \mathbb{Q}[x] /(f) \\
& \qquad A=\left(\begin{array}{ll}
-1 & 2 \\
-3 & 1
\end{array}\right) \leftrightarrow I=2 \mathbb{Z} \oplus(\alpha+1) \mathbb{Z} \text { (not principal) }
\end{aligned}
$$

Example: Generalized method

$$
\text { Let } f=x^{2}+5 \text { and } K=\mathbb{Q}(\alpha) \cong \mathbb{Q}[x] /(f) .
$$

$$
A=\left(\begin{array}{ll}
-1 & 2 \\
-3 & 1
\end{array}\right) \leftrightarrow I=2 \mathbb{Z} \oplus(\alpha+1) \mathbb{Z} \text { (not principal) }
$$

- We want $(I: \mathbb{Z}[\alpha])=I$ to be principal.

Example: Generalized method

Let $f=x^{2}+5$ and $K=\mathbb{Q}(\alpha) \cong \mathbb{Q}[x] /(f)$.
$A=\left(\begin{array}{ll}-1 & 2 \\ -3 & 1\end{array}\right) \leftrightarrow I=2 \mathbb{Z} \oplus(\alpha+1) \mathbb{Z}$ (not principal)

- We want $(I: \mathbb{Z}[\alpha])=I$ to be principal.
- The ray class field L (ramifies at 3 , which is relatively prime to I) has degree 8 over \mathbb{Q}.

Example: Generalized method

Let $f=x^{2}+5$ and $K=\mathbb{Q}(\alpha) \cong \mathbb{Q}[x] /(f)$.
$A=\left(\begin{array}{ll}-1 & 2 \\ -3 & 1\end{array}\right) \leftrightarrow I=2 \mathbb{Z} \oplus(\alpha+1) \mathbb{Z}($ not principal $)$

- We want $(I: \mathbb{Z}[\alpha])=I$ to be principal.
- The ray class field L (ramifies at 3 , which is relatively prime to I) has degree 8 over \mathbb{Q}.
- The subfield $F:=\mathbb{Q}[x] /\left(x^{4}-12 x^{3}+158 x^{2}+228 x+3721\right)$ of L satisfies the desired properties.

Example: Generalized method

Let $f=x^{2}+5$ and $K=\mathbb{Q}(\alpha) \cong \mathbb{Q}[x] /(f)$.
$A=\left(\begin{array}{ll}-1 & 2 \\ -3 & 1\end{array}\right) \leftrightarrow I=2 \mathbb{Z} \oplus(\alpha+1) \mathbb{Z}($ not principal $)$

- We want $(I: \mathbb{Z}[\alpha])=I$ to be principal.
- The ray class field L (ramifies at 3 , which is relatively prime to I) has degree 8 over \mathbb{Q}.
- The subfield $F:=\mathbb{Q}[x] /\left(x^{4}-12 x^{3}+158 x^{2}+228 x+3721\right)$ of L satisfies the desired properties.
- $C=\left(\begin{array}{cc}-\mathscr{B}_{2} & -1-\mathscr{B}_{4} \\ 3+\mathscr{B}_{2}+3 \mathscr{R}_{4} & -1-2 \mathscr{B}_{2}-2 \mathscr{B}_{3}-\mathscr{B}_{4}\end{array}\right)$ is a matrix in
$\mathrm{GL}_{2}\left(\mathscr{O}_{F}\right)$ which conjugates \mathscr{C}_{f} to A.

Open problems

Open problems

- Is there a way to implement the algorithm to test for $\mathrm{GL}_{n}(R)$-conjugacy in the non-irreducible case? Need an algorithm that determines whether an ideal in
$\prod^{m} \operatorname{Frac}(R)\left(\alpha_{i}\right)$ (as a $\operatorname{Frac}(R)$-algebra) is principal.

$$
i=1
$$

Open problems

- Is there a way to implement the algorithm to test for $\mathrm{GL}_{n}(R)$-conjugacy in the non-irreducible case? Need an algorithm that determines whether an ideal in

$\Pi$$\operatorname{Frac}(R)\left(\alpha_{i}\right)$ (as a $\operatorname{Frac}(R)$-algebra) is principal. $i=1$

- How often does the method of searching through class fields succeed? Is there a nice classification for the cases in which the method works?

Open problems

- Is there a way to implement the algorithm to test for $\mathrm{GL}_{n}(R)$-conjugacy in the non-irreducible case? Need an algorithm that determines whether an ideal in
$\prod^{m} \operatorname{Frac}(R)\left(\alpha_{i}\right)$ (as a $\operatorname{Frac}(R)$-algebra) is principal. $i=1$
- How often does the method of searching through class fields succeed? Is there a nice classification for the cases in which the method works?
- Should we consider ray class fields which ramify at primes related to the discriminant of f ?

