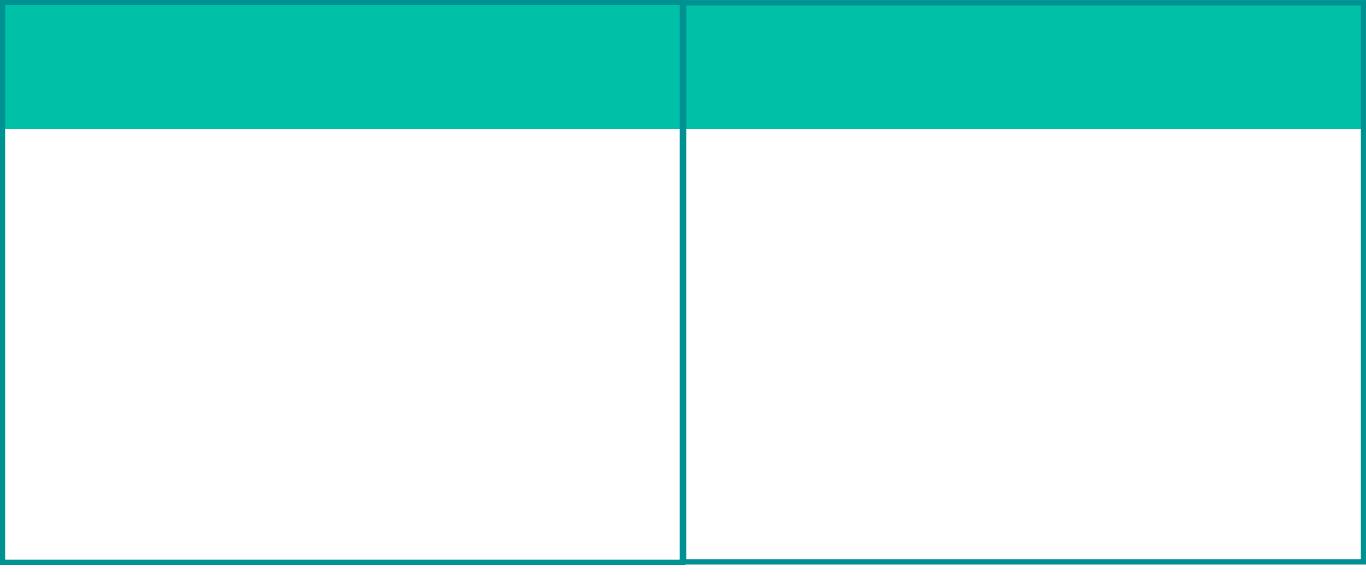
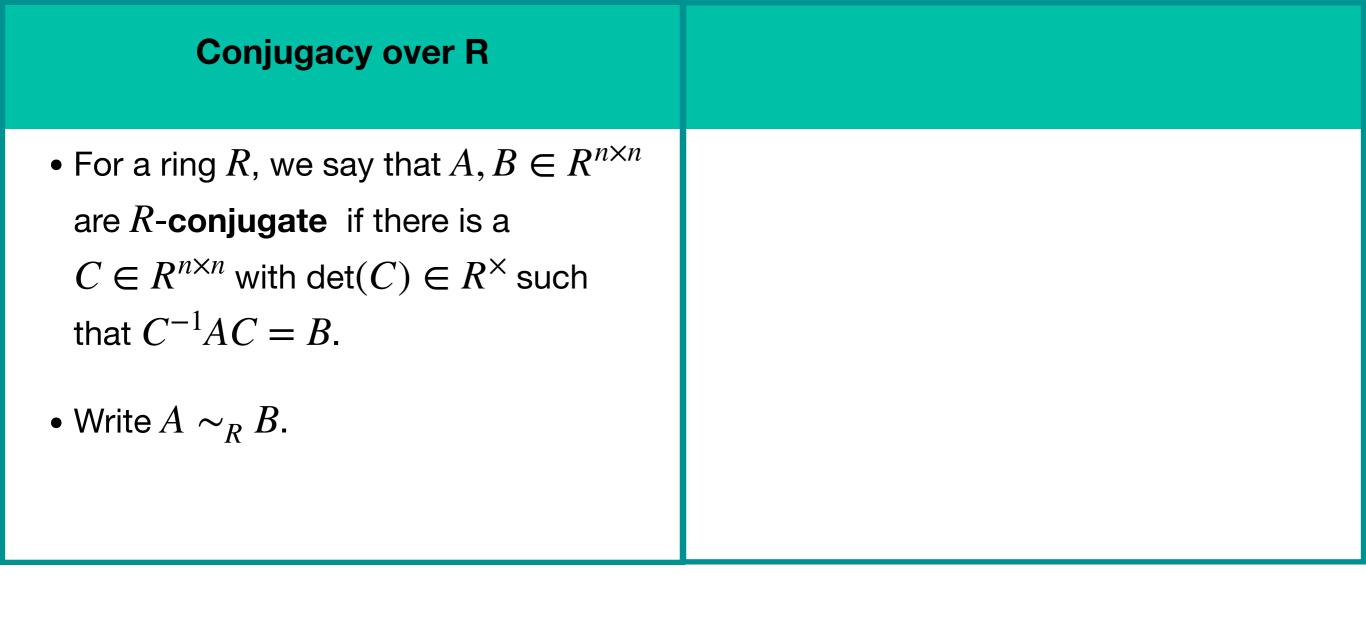
Conjugacy of Integral Matrices over Algebraic Extensions

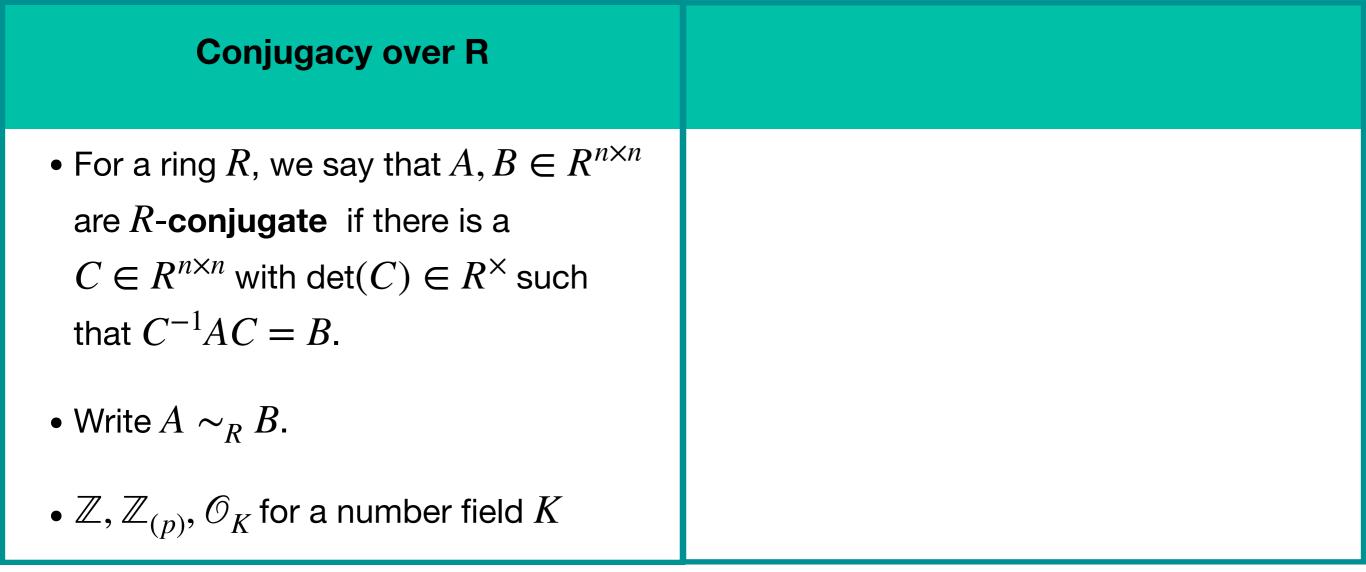
Rebecca Afandi

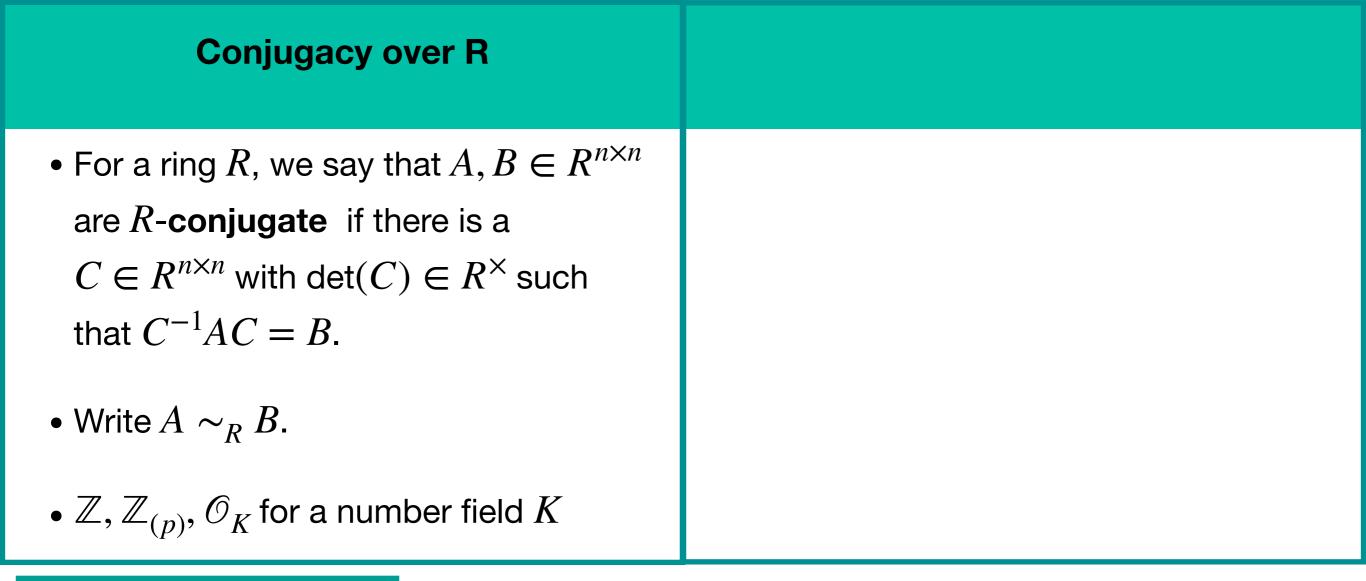


Conjugacy over R • For a ring R, we say that $A, B \in \mathbb{R}^{n \times n}$ are *R*-conjugate if there is a $C \in \mathbb{R}^{n \times n}$ with $det(C) \in \mathbb{R}^{\times}$ such that $C^{-1}AC = B$.

Rebecca Afandi

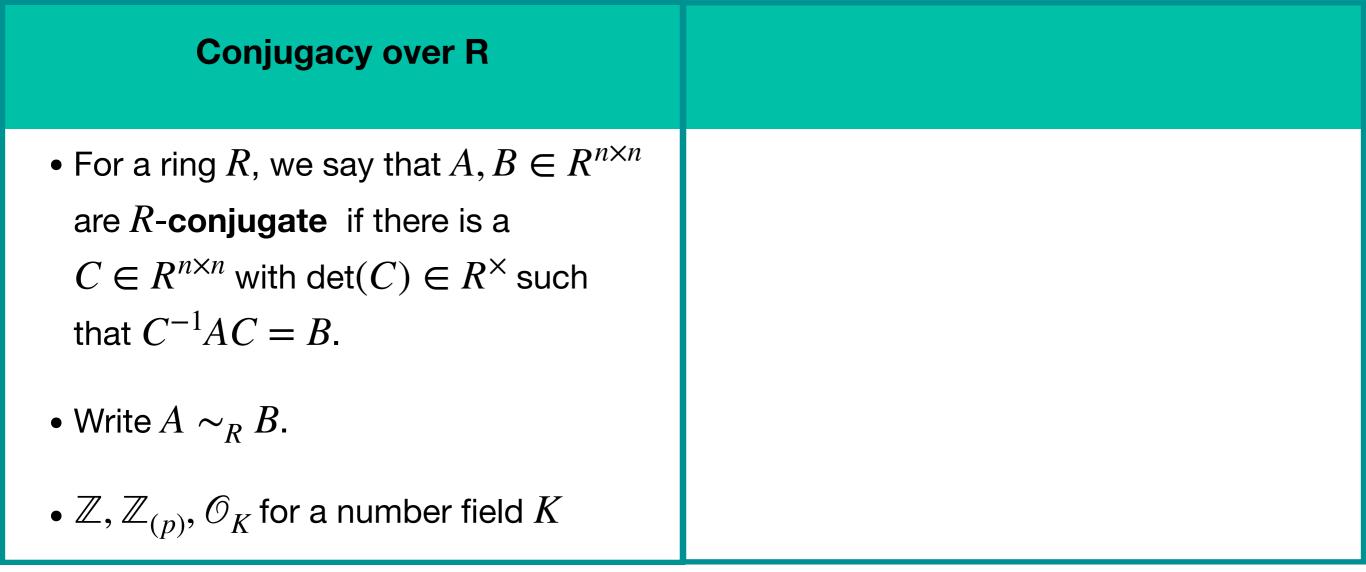




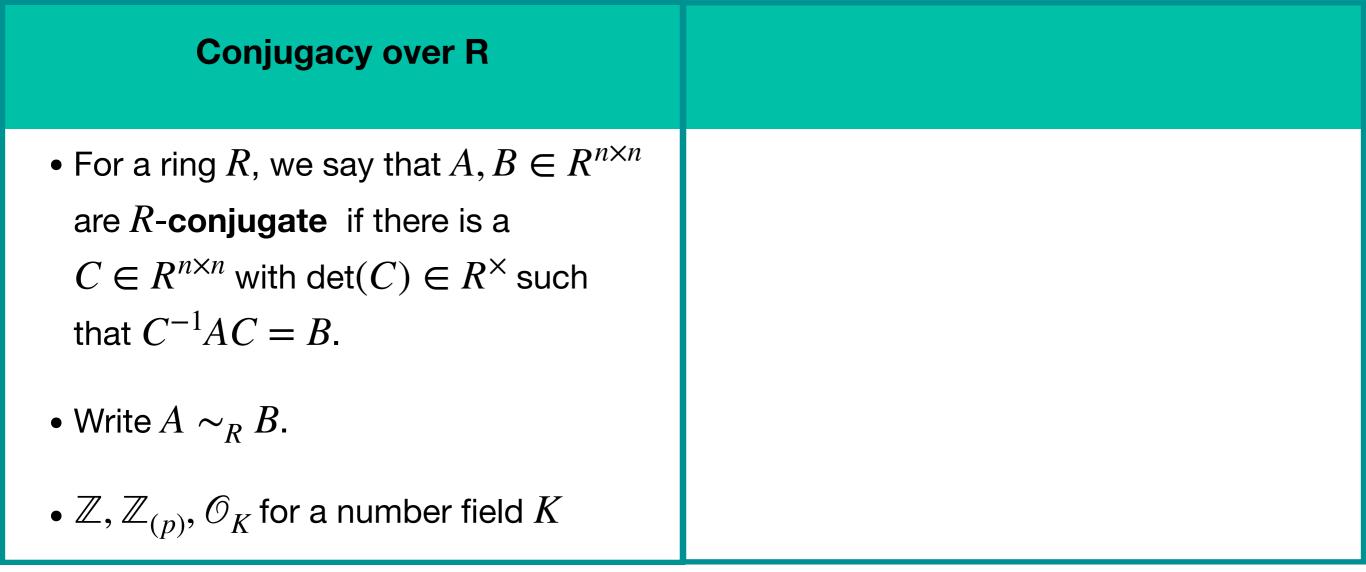


The localization of \mathbb{Z} at p is $\mathbb{Z}_{(p)} = \{\frac{a}{b} : a, b \in \mathbb{Z}, p \nmid b\}$

Rebecca Afandi



Conjugacy ov	er R			
 For a ring <i>R</i>, we say that are <i>R</i>-conjugate if the <i>C</i> ∈ <i>R^{n×n}</i> with det(<i>C</i>) that <i>C</i>⁻¹<i>AC</i> = <i>B</i>. Write <i>A</i> ~_{<i>R</i>} <i>B</i>. ℤ, ℤ_(p), 𝔅_K for a numb 	re is a $\in R^{\times}$ such			
	\mathcal{O}_{K} is the set of algebraic integelements (elements with monic integer minimal polynomial p	ral nents egral		



Conjugacy over R	R is a field
• For a ring R , we say that $A, B \in R^{n \times n}$ are R -conjugate if there is a $C \in R^{n \times n}$ with $det(C) \in R^{\times}$ such that $C^{-1}AC = B$.	
• Write $A \sim_R B$. • $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathcal{O}_K$ for a number field K	

Conjugacy over R	R is a field
 For a ring <i>R</i>, we say that <i>A</i>, <i>B</i> ∈ <i>R^{n×n}</i> are <i>R</i>-conjugate if there is a <i>C</i> ∈ <i>R^{n×n}</i> with det(<i>C</i>) ∈ <i>R[×]</i> such that <i>C</i>⁻¹<i>AC</i> = <i>B</i>. Write <i>A</i> ~_{<i>R</i>} <i>B</i>. ℤ, ℤ_(p), 𝔅_{<i>K</i>} for a number field <i>K</i> 	 All matrices with the same square- free characteristic polynomial are conjugate over a field.

Conjugacy over R	R is a field
 For a ring <i>R</i>, we say that <i>A</i>, <i>B</i> ∈ <i>R^{n×n}</i> are <i>R</i>-conjugate if there is a <i>C</i> ∈ <i>R^{n×n}</i> with det(<i>C</i>) ∈ <i>R[×]</i> such that <i>C⁻¹AC</i> = <i>B</i>. Write <i>A</i> ~_{<i>R</i>} <i>B</i>. 	 All matrices with the same square-free characteristic polynomial are conjugate over a field. Let <i>f</i> ∈ Z[x] be monic and square-free of degree <i>n</i>.
• $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathcal{O}_K$ for a number field K	

Conjugacy over R	R is a field
• For a ring R , we say that $A, B \in R^{n \times n}$ are R -conjugate if there is a $C \in R^{n \times n}$ with $det(C) \in R^{\times}$ such that $C^{-1}AC = B$.	 All matrices with the same square-free characteristic polynomial are conjugate over a field. Let <i>f</i> ∈ ℤ[x] be monic and square-free of degree <i>n</i>.
• Write $A \sim_R B$. • $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathcal{O}_K$ for a number field K	• $\mathcal{M}_f = \{A \in \mathbb{Z}^{n \times n} : \det(xI - A) = f\}$

Conjugacy over R	R is a field	
 For a ring <i>R</i>, we say that <i>A</i>, <i>B</i> ∈ <i>R^{n×n}</i> are <i>R</i>-conjugate if there is a <i>C</i> ∈ <i>R^{n×n}</i> with det(<i>C</i>) ∈ <i>R[×]</i> such that <i>C⁻¹AC</i> = <i>B</i>. Write <i>A</i> ~_{<i>R</i>} <i>B</i>. 	 All matrices with the same square- free characteristic polynomial are conjugate over a field. 	
	• Let $f \in \mathbb{Z}[x]$ be monic and square-free of degree n .	
• $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathscr{O}_K$ for a number field K	• $\mathcal{M}_f = \{A \in \mathbb{Z}^{n \times n} : \det(xI - A) = f\}$	
Latimer and MacDuffee Correspondence (1933)		

Conjugacy over R	R is a field	
 For a ring <i>R</i>, we say that <i>A</i>, <i>B</i> ∈ <i>R^{n×n}</i> are <i>R</i>-conjugate if there is a <i>C</i> ∈ <i>R^{n×n}</i> with det(<i>C</i>) ∈ <i>R[×]</i> such that <i>C⁻¹AC</i> = <i>B</i>. Write <i>A</i> ~_{<i>R</i>} <i>B</i>. 	 All matrices with the same square- free characteristic polynomial are conjugate over a field. 	
	• Let $f \in \mathbb{Z}[x]$ be monic and square-free of degree n .	
• $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathscr{O}_K$ for a number field K	• $\mathcal{M}_f = \{A \in \mathbb{Z}^{n \times n} : \det(xI - A) = f\}$	
Latimer and MacDuffee Correspondence (1933) Taussky (1949)		

Conjugacy over R	R is a field	
• For a ring R , we say that $A, B \in R^{n \times n}$ are R -conjugate if there is a $C \in R^{n \times n}$ with $det(C) \in R^{\times}$ such that $C^{-1}AC = B$.	 All matrices with the same square- free characteristic polynomial are conjugate over a field. Let f ∈ Z[x] be monic and 	
• Write $A \sim_R B$.	square-free of degree <i>n</i> .	
• $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathscr{O}_K$ for a number field K	• $\mathcal{M}_f = \{A \in \mathbb{Z}^{n \times n} : \det(xI - A) = f\}$	
Latimer and MacDuffee Correspondence (1933) Taussky (1949)		

• f(x) irreducible with root α

Conjugacy over R	R is a field	
• For a ring R , we say that $A, B \in R^{n \times n}$ are R -conjugate if there is a $C \in R^{n \times n}$ with $det(C) \in R^{\times}$ such that $C^{-1}AC = B$.	 All matrices with the same square-free characteristic polynomial are conjugate over a field. Let <i>f</i> ∈ ℤ[x] be monic and square-free of degree <i>n</i>. 	
• Write $A \sim_R B$. • $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathcal{O}_K$ for a number field K	• $\mathcal{M}_f = \{A \in \mathbb{Z}^{n \times n} : \det(xI - A) = f\}$	
Latimer and MacDuffee Correspondence (1933) Taussky (1949)		

- f(x) irreducible with root α
- Let $K = \mathbb{Q}(\alpha)$

Conjugacy over R	R is a field	
 For a ring <i>R</i>, we say that <i>A</i>, <i>B</i> ∈ <i>R^{n×n}</i> are <i>R</i>-conjugate if there is a <i>C</i> ∈ <i>R^{n×n}</i> with det(<i>C</i>) ∈ <i>R[×]</i> such that <i>C⁻¹AC</i> = <i>B</i>. Write <i>A</i> ~_{<i>R</i>} <i>B</i>. 	 All matrices with the same square-free characteristic polynomial are conjugate over a field. Let <i>f</i> ∈ Z[x] be monic and square-free of degree <i>n</i>. 	
• $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathscr{O}_K$ for a number field K	• $\mathcal{M}_f = \{A \in \mathbb{Z}^{n \times n} : \det(xI - A) = f\}$	
Latimer and MacDuffee Correspondence (1933)		
Taussky (1949)		
• $f(x)$ irreducible with root α		

- Let $K = \mathbb{Q}(\alpha)$
- $\mathcal{M}_f/_{\sim_{\mathbb{Z}}} \leftrightarrow \text{fractional } \mathbb{Z}[\alpha]$ -ideal classes in *K*

$$\mathbb{Z}$$
-conjugacy within \mathcal{M}_f for $f = x^2 + 5$

• Let $f = x^2 + 5$ and K be the number field $\mathbb{Q}(\alpha) \cong \mathbb{Q}[x]/(f)$. Note: $\mathcal{O}_K = \mathbb{Z}[\alpha]$. Some $\mathbb{Z}[\alpha]$ -fractional ideals in K are:

- Let $f = x^2 + 5$ and K be the number field $\mathbb{Q}(\alpha) \cong \mathbb{Q}[x]/(f)$. Note: $\mathcal{O}_K = \mathbb{Z}[\alpha]$. Some $\mathbb{Z}[\alpha]$ -fractional ideals in K are:
 - $\mathbb{Z}[\alpha] = 1\mathbb{Z} \oplus \alpha\mathbb{Z}$

- Let $f = x^2 + 5$ and K be the number field $\mathbb{Q}(\alpha) \cong \mathbb{Q}[x]/(f)$. Note: $\mathcal{O}_K = \mathbb{Z}[\alpha]$. Some $\mathbb{Z}[\alpha]$ -fractional ideals in K are:
 - $\mathbb{Z}[\alpha] = 1\mathbb{Z} \oplus \alpha\mathbb{Z}$
 - $I = 2\mathbb{Z} \oplus (1 + \alpha)\mathbb{Z}$ (non-principal)

- Let $f = x^2 + 5$ and K be the number field $\mathbb{Q}(\alpha) \cong \mathbb{Q}[x]/(f)$. Note: $\mathcal{O}_K = \mathbb{Z}[\alpha]$. Some $\mathbb{Z}[\alpha]$ -fractional ideals in K are:
 - $\mathbb{Z}[\alpha] = 1\mathbb{Z} \oplus \alpha\mathbb{Z}$
 - $I = 2\mathbb{Z} \oplus (1 + \alpha)\mathbb{Z}$ (non-principal)
- These are representatives of the fractional ideal classes (fractional ideals *I* and *J* are equivalent if there is $k \in \mathbb{Q}(\alpha)$ such that kI = J).

- Let $f = x^2 + 5$ and K be the number field $\mathbb{Q}(\alpha) \cong \mathbb{Q}[x]/(f)$. Note: $\mathcal{O}_K = \mathbb{Z}[\alpha]$. Some $\mathbb{Z}[\alpha]$ -fractional ideals in K are:
 - $\mathbb{Z}[\alpha] = 1\mathbb{Z} \oplus \alpha\mathbb{Z}$
 - $I = 2\mathbb{Z} \oplus (1 + \alpha)\mathbb{Z}$ (non-principal)
- These are representatives of the fractional ideal classes (fractional ideals *I* and *J* are equivalent if there is $k \in \mathbb{Q}(\alpha)$ such that kI = J).
- The fractional ideal classes form the ideal class group, denoted by $\operatorname{Pic}(\mathbb{Z}[\alpha])$. The class number is the order of the class group. $(h_K = 2 \text{ for } K = \mathbb{Q}(\alpha).)$

- Let $f = x^2 + 5$ and K be the number field $\mathbb{Q}(\alpha) \cong \mathbb{Q}[x]/(f)$. Note: $\mathcal{O}_K = \mathbb{Z}[\alpha]$. Some $\mathbb{Z}[\alpha]$ -fractional ideals in K are:
 - $\mathbb{Z}[\alpha] = 1\mathbb{Z} \oplus \alpha\mathbb{Z}$
 - $I = 2\mathbb{Z} \oplus (1 + \alpha)\mathbb{Z}$ (non-principal)

$$\begin{array}{l} \alpha \cdot 1 = 0 \cdot 1 + 1 \cdot \alpha \\ \alpha \cdot \alpha = -5 \cdot 1 + 0 \cdot \alpha \end{array} \quad \text{so } \mathbb{Z}[\alpha] \text{ corresponds to } C_f = \begin{pmatrix} 0 & 1 \\ -5 & 0 \end{pmatrix}. \end{array}$$

 $\alpha \cdot 2 = -1 \cdot 2 + 2 \cdot (1 + \alpha)$ $\alpha \cdot (1 + \alpha) = -3 \cdot 2 + 1 \cdot (1 + \alpha)$ so *I* corresponds to $\begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix}$.

Rebecca Afandi

$$\mathbb{Z}$$
-conjugacy within \mathcal{M}_f for $f = x^2 + 5$

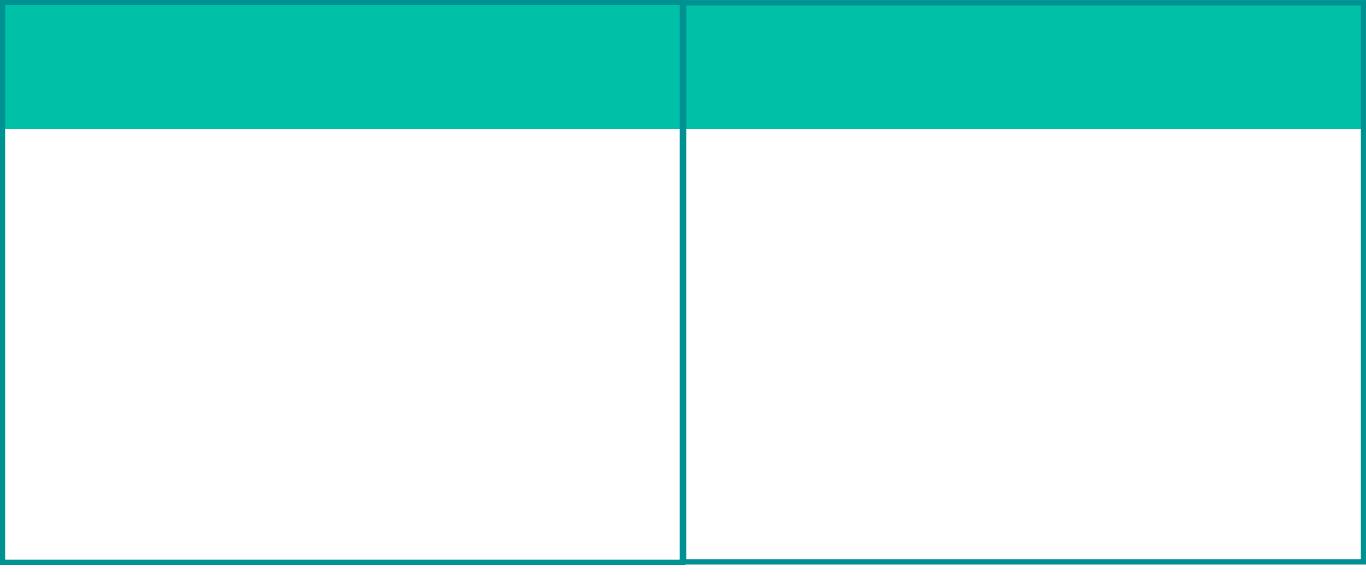
$$\mathbb{Z}[\alpha] \not\cong_{\mathbb{Z}[\alpha]} I \implies \begin{pmatrix} 0 & 1 \\ -5 & 0 \end{pmatrix} \not\sim_{\mathbb{Z}} \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix} \stackrel{) \cong \mathbb{Q}[x]/(f).}{|s \text{ in } K \text{ are:}}$$

- $\mathbb{Z}[\alpha] = 1\mathbb{Z} \oplus \alpha\mathbb{Z}$
- $I = 2\mathbb{Z} \oplus (1 + \alpha)\mathbb{Z}$ (non-principal)

$$\begin{array}{l} \alpha \cdot 1 = 0 \cdot 1 + 1 \cdot \alpha \\ \alpha \cdot \alpha = -5 \cdot 1 + 0 \cdot \alpha \end{array} \quad \text{so } \mathbb{Z}[\alpha] \text{ corresponds to } C_f = \begin{pmatrix} 0 & 1 \\ -5 & 0 \end{pmatrix}.$$

 $\alpha \cdot 2 = -1 \cdot 2 + 2 \cdot (1 + \alpha)$ so *I* corresponds to $\begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix}$. $\alpha \cdot (1 + \alpha) = -3 \cdot 2 + 1 \cdot (1 + \alpha)$

Rebecca Afandi



Conjugacy over R	R is a field	
 For a ring <i>R</i>, we say that <i>A</i>, <i>B</i> ∈ <i>R^{n×n}</i> are <i>R</i>-conjugate if there is a <i>C</i> ∈ <i>R^{n×n}</i> with det(<i>C</i>) ∈ <i>R[×]</i> such that <i>C⁻¹AC</i> = <i>B</i>. Write <i>A</i> ~_{<i>R</i>} <i>B</i>. 	 All matrices with the same square-free characteristic polynomial are conjugate over a field. Let <i>f</i> ∈ Z[x] be monic and square-free of degree <i>n</i>. 	
• $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathscr{O}_K$ for a number field K	• $\mathcal{M}_f = \{A \in \mathbb{Z}^{n \times n} : \det(xI - A) = f\}$	
Latimer and MacDuffee Correspondence (1933)		
Taussky (1949)		
• $f(x)$ irreducible with root α		

- Let $K = \mathbb{Q}(\alpha)$
- $\mathcal{M}_f/_{\sim_{\mathbb{Z}}} \leftrightarrow \text{fractional } \mathbb{Z}[\alpha]$ -ideal classes in *K*

Conjugacy over R	R is a field	
 For a ring <i>R</i>, we say that <i>A</i>, <i>B</i> ∈ <i>R^{n×n}</i> are <i>R</i>-conjugate if there is a <i>C</i> ∈ <i>R^{n×n}</i> with det(<i>C</i>) ∈ <i>R[×]</i> such that <i>C</i>⁻¹<i>AC</i> = <i>B</i>. Write <i>A</i> ~_{<i>R</i>} <i>B</i>. ℤ, ℤ_(p), 𝔅_{<i>K</i>} for a number field <i>K</i> 	 All matrices with the same square-free characteristic polynomial are conjugate over a field. Let f ∈ Z[x] be monic and square-free of degree n. M_f = {A ∈ Z^{n×n} : det(xI − A) = f} 	
Latimer and MacDuffee Correspondence (1933)		
Taussky (1949)	Marseglia (2019)	
 f(x) irreducible with root α Let K = Q(α) 		

• $\mathcal{M}_f/_{\sim_{\mathbb{Z}}} \leftrightarrow \text{fractional } \mathbb{Z}[\alpha]$ -ideal classes in *K*

Conjugacy over R	R is a field	
• For a ring R , we say that $A, B \in R^{n \times n}$ are R -conjugate if there is a $C \in R^{n \times n}$ with $det(C) \in R^{\times}$ such that $C^{-1}AC = B$.	 All matrices with the same square-free characteristic polynomial are conjugate over a field. Let f ∈ Z[x] be monic and 	
• Write $A \sim_R B$. • $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathcal{O}_K$ for a number field K	square-free of degree n . • $\mathcal{M}_f = \{A \in \mathbb{Z}^{n \times n} : \det(xI - A) = f\}$	
Latimer and MacDuffee Correspondence (1933)		
Taussky (1949)	Marseglia (2019)	
• $f(x)$ irreducible with root α • Let $K = \mathbb{Q}(\alpha)$ • $\mathcal{M}_f/_{\sim_{\mathbb{Z}}} \leftrightarrow$ fractional $\mathbb{Z}[\alpha]$ -ideal classes in K	$f(x) = \prod_{i=1}^{m} f_i$ square-free with $\alpha = (\alpha_1, \dots, \alpha_m)$	

Conjugacy over R	R is a field	
• For a ring R , we say that $A, B \in R^{n \times n}$ are R -conjugate if there is a $C \in R^{n \times n}$ with det $(C) \in R^{\times}$ such	 All matrices with the same square- free characteristic polynomial are conjugate over a field. 	
that $C^{-1}AC = B$. • Write $A \sim_R B$.	• Let $f \in \mathbb{Z}[x]$ be monic and square-free of degree n .	
• $\mathbb{Z}, \mathbb{Z}_{(p)}, \mathcal{O}_K$ for a number field K	• $\mathcal{M}_f = \{A \in \mathbb{Z}^{n \times n} : \det(xI - A) = f\}$	
Latimer and MacDuffee Correspondence (1933)		
Taussky (1949)	Marseglia (2019)	
• Let $K = \mathbb{Q}(\alpha)$	$f(x) = \prod_{i=1}^{m} f_i \text{ square-free with } \alpha = (\alpha_1, \dots, \alpha_m)$ $f(K) = \prod_{i=1}^{m} \mathbb{Q}(\alpha_i)$	

Conjugacy over R	R is a field	
 For a ring <i>R</i>, we say that <i>A</i>, <i>B</i> ∈ <i>R^{n×n}</i> are <i>R</i>-conjugate if there is a <i>C</i> ∈ <i>R^{n×n}</i> with det(<i>C</i>) ∈ <i>R[×]</i> such that <i>C</i>⁻¹<i>AC</i> = <i>B</i>. Write <i>A</i> ~_{<i>R</i>} <i>B</i>. ℤ, ℤ_(p), 𝔅_{<i>K</i>} for a number field <i>K</i> 	 All matrices with the same square-free characteristic polynomial are conjugate over a field. Let f ∈ Z[x] be monic and square-free of degree n. M_f = {A ∈ Z^{n×n} : det(xI − A) = f} 	
Latimer and MacDuffee Correspondence (1933)		
Taussky (1949)	Marseglia (2019)	
• Let $K = \mathbb{Q}(\alpha)$	$f(x) = \prod_{i=1}^{m} f_i$ square-free with $\alpha = (\alpha_1, \dots, \alpha_m)$	
-ideal classes in K	$t K = \prod_{i=1}^{m} \mathbb{Q}(\alpha_i)$	
	$f'_{f'} \sim_{\mathbb{Z}} \leftrightarrow \text{ full } \mathbb{Z}[(\alpha_1, \dots, \alpha_m)] \text{-module classes}$	
Rebecca Afandi in	K Conjugacy of Integral Matrices	

Z-conjugacy within \mathcal{M}_{f} for $f = f_{1}f_{2}$ with $f_{1} = x^{2} + 4x + 7$, $f_{2} = x^{3} - 9x^{2} - 3x - 1$

Rebecca Afandi

Z-conjugacy within
$$\mathcal{M}_{f}$$
 for $f = f_{1}f_{2}$ with $f_{1} = x^{2} + 4x + 7$, $f_{2} = x^{3} - 9x^{2} - 3x - 1$

• Letting $K_i = \mathbb{Q}(\alpha_i) \cong \mathbb{Q}[x]/(f_i)$ we consider classes of $\mathbb{Z}[(\alpha_1, \alpha_2)]$ -modules within $K := K_1 \times K_2$.

Z-conjugacy within
$$\mathcal{M}_{f}$$
 for $f = f_{1}f_{2}$ with
 $f_{1} = x^{2} + 4x + 7, f_{2} = x^{3} - 9x^{2} - 3x - 1$

- Letting $K_i = \mathbb{Q}(\alpha_i) \cong \mathbb{Q}[x]/(f_i)$ we consider classes of $\mathbb{Z}[(\alpha_1, \alpha_2)]$ -modules within $K := K_1 \times K_2$.
- $\mathcal{O}_K = \mathcal{O}_{K_1} \times \mathcal{O}_{K_2}$ but in general, fractional ideals are not products of fractional ideals in the $\mathscr{I}_{\mathbb{Z}[\alpha_i]}$.

Z-conjugacy within
$$\mathcal{M}_{f}$$
 for $f = f_{1}f_{2}$ with
 $f_{1} = x^{2} + 4x + 7, f_{2} = x^{3} - 9x^{2} - 3x - 1$

- Letting $K_i = \mathbb{Q}(\alpha_i) \cong \mathbb{Q}[x]/(f_i)$ we consider classes of $\mathbb{Z}[(\alpha_1, \alpha_2)]$ -modules within $K := K_1 \times K_2$.
- $\mathcal{O}_K = \mathcal{O}_{K_1} \times \mathcal{O}_{K_2}$ but in general, fractional ideals are not products of fractional ideals in the $\mathscr{I}_{\mathbb{Z}[\alpha_i]}$.
- \mathcal{M}_{f_1} has 2 \mathbb{Z} -conjugacy classes and \mathcal{M}_{f_2} has 6 \mathbb{Z} -conjugacy classes, but \mathcal{M}_f has 852 \mathbb{Z} -classes.

Rebecca Afandi

 $\varphi_{\mathbb{Z}}: \mathscr{I}_{\mathbb{Z}[\alpha]}/_{\cong \mathbb{Z}[\alpha]} \to \mathscr{M}_f/_{\sim \mathbb{Z}}$ $[I] \mapsto [A]$

Rebecca Afandi

 $\varphi_{\mathbb{Z}}: \mathscr{I}_{\mathbb{Z}[\alpha]}/_{\cong \mathbb{Z}[\alpha]} \to \mathscr{M}_f/_{\sim \mathbb{Z}}$

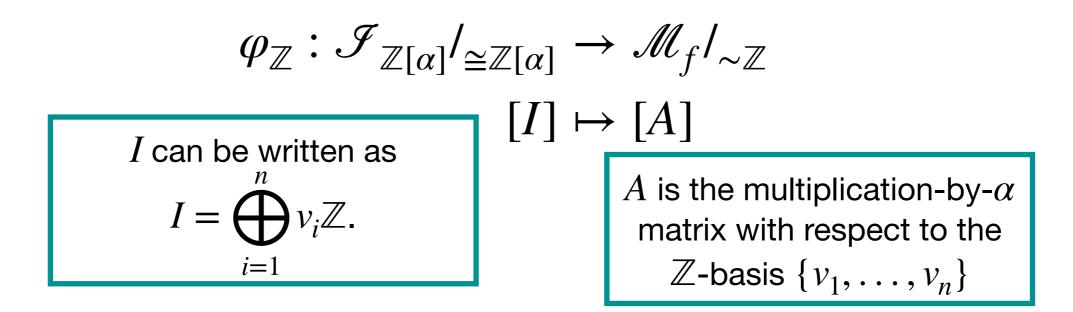
 $[I] \mapsto [A]$

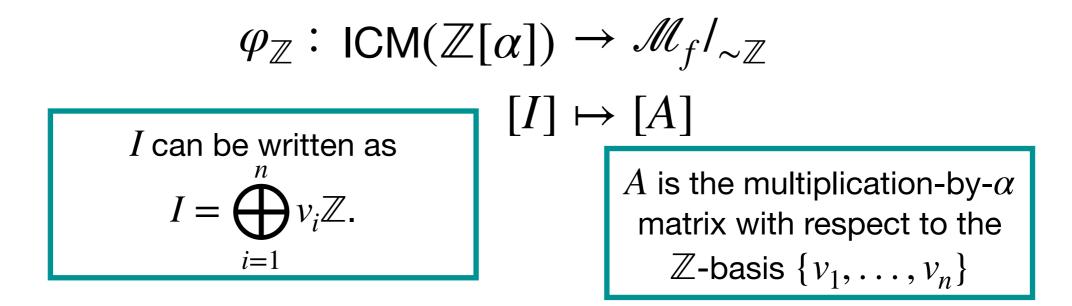
 $\mathscr{F}_{\mathbb{Z}[\alpha]}$ denotes the set of fractional $\mathbb{Z}[\alpha]$ -ideals.

Rebecca Afandi

$$\begin{split} \varphi_{\mathbb{Z}} : \mathscr{I}_{\mathbb{Z}[\alpha]} /_{\cong \mathbb{Z}[\alpha]} \to \mathscr{M}_{f} /_{\sim \mathbb{Z}} \\ I \text{ can be written as} \\ I = \bigoplus_{i=1}^{n} v_{i} \mathbb{Z}. \end{split} \qquad \begin{bmatrix} I \end{bmatrix} \mapsto \begin{bmatrix} A \end{bmatrix} \end{split}$$

Rebecca Afandi





 $\varphi_{\mathbb{Z}}: \operatorname{ICM}(\mathbb{Z}[\alpha]) \to \mathscr{M}_f/_{\sim \mathbb{Z}}$ $[I] \mapsto [A]$

$$\varphi_{\mathbb{Z}} : \operatorname{ICM}(\mathbb{Z}[\alpha]) \to \mathscr{M}_f/_{\sim \mathbb{Z}}$$
$$[I] \mapsto [A]$$

• How to find $\psi_{\mathbb{Z}} := \varphi_{\mathbb{Z}}^{-1}$

Rebecca Afandi

$$\varphi_{\mathbb{Z}} : \operatorname{ICM}(\mathbb{Z}[\alpha]) \to \mathscr{M}_f/_{\sim \mathbb{Z}}$$
$$[I] \mapsto [A]$$

- How to find $\psi_{\mathbb{Z}} := \varphi_{\mathbb{Z}}^{-1}$
- For *f* irreducible, find $\overline{v} = (v_1, \dots, v_n)^t$ so that $A\overline{v} = \alpha\overline{v}$. Let $I = \bigoplus v_i \mathbb{Z}$ and let $\psi_{\mathbb{Z}}([A]) = [I]$.

$$\varphi_{\mathbb{Z}} : \operatorname{ICM}(\mathbb{Z}[\alpha]) \to \mathscr{M}_f/_{\sim \mathbb{Z}}$$
$$[I] \mapsto [A]$$

- How to find $\psi_{\mathbb{Z}} := \varphi_{\mathbb{Z}}^{-1}$
- For *f* irreducible, find $\overline{v} = (v_1, \dots, v_n)^t$ so that $A\overline{v} = \alpha \overline{v}$. Let $I = \bigoplus v_i \mathbb{Z}$ and let $\psi_{\mathbb{Z}}([A]) = [I]$.
- For f with m > 1 irreducible factors, let $A\overline{v}_i = \alpha_i \overline{v}_i$ and $\overline{v}_i = (v_{i1}, \dots, v_{in})^t$, then $\psi_{\mathbb{Z}}([A])$ has representative $I = (v_{11}, \dots, v_{m1})\mathbb{Z} \oplus \dots \oplus (v_{1n}, \dots, v_{mn})\mathbb{Z}$.

Rebecca Afandi

Rebecca Afandi

• Letting
$$K := \mathbb{Q}(\alpha) = \mathbb{Q}[x]/(f)$$
, we have
 $\mathbb{Z}[\alpha] = 1\mathbb{Z} \oplus \alpha\mathbb{Z} \subsetneq \mathcal{O}_K = 1\mathbb{Z} \oplus \left(\frac{1+\alpha}{2}\right)\mathbb{Z}$

Rebecca Afandi

- Letting $K := \mathbb{Q}(\alpha) = \mathbb{Q}[x]/(f)$, we have $\mathbb{Z}[\alpha] = 1\mathbb{Z} \oplus \alpha\mathbb{Z} \subsetneq \mathcal{O}_K = 1\mathbb{Z} \oplus \left(\frac{1+\alpha}{2}\right)\mathbb{Z}$
- For a $\mathbb{Z}[\alpha]$ -ideal *I*, the **multiplicator ring** of *I* is (I : I).

- Letting $K := \mathbb{Q}(\alpha) = \mathbb{Q}[x]/(f)$, we have $\mathbb{Z}[\alpha] = 1\mathbb{Z} \oplus \alpha\mathbb{Z} \subsetneq \mathcal{O}_K = 1\mathbb{Z} \oplus \left(\frac{1+\alpha}{2}\right)\mathbb{Z}$
- For a $\mathbb{Z}[\alpha]$ -ideal I, the **multiplicator** ring of I is (I : I).

 $(I:J) = \{x \in \mathbb{Q}(\alpha) : xJ \subseteq I\}$

Rebecca Afandi

- Letting $K := \mathbb{Q}(\alpha) = \mathbb{Q}[x]/(f)$, we have $\mathbb{Z}[\alpha] = 1\mathbb{Z} \oplus \alpha\mathbb{Z} \subsetneq \mathcal{O}_K = 1\mathbb{Z} \oplus \left(\frac{1+\alpha}{2}\right)\mathbb{Z}$
- For a $\mathbb{Z}[\alpha]$ -ideal I, the **multiplicator ring** of I is (I : I).
- If I = kJ for $k \in \mathbb{Q}(\alpha)$, then (I : I) = (J : J).

Rebecca Afandi

- Letting $K := \mathbb{Q}(\alpha) = \mathbb{Q}[x]/(f)$, we have $\mathbb{Z}[\alpha] = 1\mathbb{Z} \oplus \alpha\mathbb{Z} \subsetneq \mathcal{O}_K = 1\mathbb{Z} \oplus \left(\frac{1+\alpha}{2}\right)\mathbb{Z}$
- For a $\mathbb{Z}[\alpha]$ -ideal I, the **multiplicator ring** of I is (I : I).
- If I = kJ for $k \in \mathbb{Q}(\alpha)$, then (I : I) = (J : J).

•
$$\mathbb{Z}[\alpha] \leftrightarrow C_f = \begin{pmatrix} 0 & 1 \\ -23 & 0 \end{pmatrix}$$
 and $\mathcal{O}_K \leftrightarrow A = \begin{pmatrix} -1 & 2 \\ -12 & 1 \end{pmatrix}$. These matrices are not \mathbb{Z} -conjugate.

- Letting $K := \mathbb{Q}(\alpha) = \mathbb{Q}[x]/(f)$, we have $\mathbb{Z}[\alpha] = 1\mathbb{Z} \oplus \alpha\mathbb{Z} \subsetneq \mathcal{O}_K = 1\mathbb{Z} \oplus \left(\frac{1+\alpha}{2}\right)\mathbb{Z}$
- For a $\mathbb{Z}[\alpha]$ -ideal I, the **multiplicator ring** of I is (I : I).
- If I = kJ for $k \in \mathbb{Q}(\alpha)$, then (I : I) = (J : J).

•
$$\mathbb{Z}[\alpha] \leftrightarrow C_f = \begin{pmatrix} 0 & 1 \\ -23 & 0 \end{pmatrix}$$
 and $\mathcal{O}_K \leftrightarrow A = \begin{pmatrix} -1 & 2 \\ -12 & 1 \end{pmatrix}$. These matrices are not \mathbb{Z} -conjugate.

• ICM($\mathbb{Z}[\alpha]$) = Pic($\mathbb{Z}[\alpha]$) \sqcup Pic(\mathcal{O}_K). Each Picard group has order 3, so there are 6 \mathbb{Z} -conjugacy classes within \mathcal{M}_f .

Rebecca Afandi

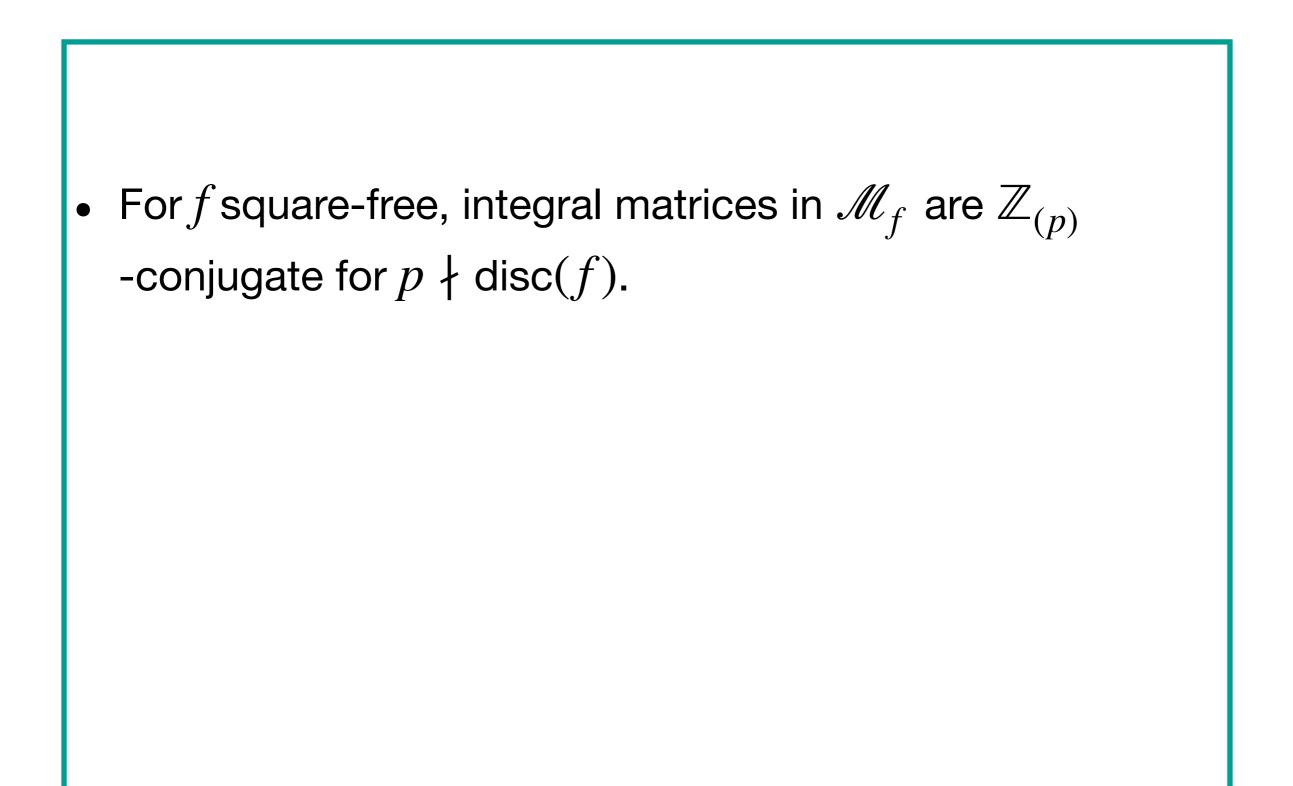
- Letting $K := \mathbb{Q}(\alpha) = \mathbb{Q}[x]/(f)$, we have $\mathbb{Z}[\alpha] = 1\mathbb{Z} \oplus \alpha\mathbb{Z} \subsetneq \mathcal{O}_K = 1\mathbb{Z} \oplus \left(\frac{1+\alpha}{2}\right)\mathbb{Z}$
- For a $\mathbb{Z}[\alpha]$ -ideal *I*, the **multiplicator ring** of *I* is (I : I).
- If I = kJ for $k \in \mathbb{Q}(\alpha)$, then (I : I) = (J : J).

•
$$\mathbb{Z}[\alpha] \leftrightarrow C_f = \begin{pmatrix} 0 & 1 \\ -23 & 0 \end{pmatrix}$$
 and $\mathcal{O}_K \leftrightarrow A = \begin{pmatrix} -1 & 2 \\ -12 & 1 \end{pmatrix}$. These matrices are not \mathbb{Z} -conjugate.
ICM $(\mathbb{Z}[\alpha]) = \sqcup_{\mathcal{O}} \operatorname{ICM}_{\mathcal{O}}(\mathbb{Z}[\alpha]) \supseteq \sqcup_{\mathcal{O}} \operatorname{Pic}(\mathcal{O})$

• ICM($\mathbb{Z}[\alpha]$) = Pic($\mathbb{Z}[\alpha]$) \sqcup Pic(\mathcal{O}_K). Each Picard group has order 3, so there are 6 \mathbb{Z} -conjugacy classes within \mathcal{M}_f .

Rebecca Afandi

 $\mathbb{Z}_{(p)}$ -conjugacy



Rebecca Afandi

 $\mathbb{Z}_{(p)}$ -conjugacy

- For f square-free, integral matrices in \mathcal{M}_f are $\mathbb{Z}_{(p)}$ -conjugate for $p \nmid \operatorname{disc}(f)$.
- A local-global principal does not hold for matrix conjugacy: $A \sim_{\mathbb{Z}_{(p)}} B \ \forall \ p \not\Rightarrow A \sim_{\mathbb{Z}} B$

 $\mathbb{Z}_{(p)}$ -conjugacy

- For f square-free, integral matrices in \mathcal{M}_f are $\mathbb{Z}_{(p)}$ -conjugate for $p \nmid \operatorname{disc}(f)$.
- A local-global principal does not hold for matrix conjugacy: $A \sim_{\mathbb{Z}_{(p)}} B \ \forall \ p \not\Rightarrow A \sim_{\mathbb{Z}} B$
- I refer to matrices which satisfy $A \sim_{\mathbb{Z}_{(p)}} B$ for all primes p as **locally conjugate**.

$$A = \begin{pmatrix} 0 & -6 \\ 1 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 2 \\ -3 & 0 \end{pmatrix} \text{ have characteristic polynomial } c(x) = x^2 + 6, \text{ with } \text{disc}(c) = -24.$$

$$A = \begin{pmatrix} 0 & -6 \\ 1 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 2 \\ -3 & 0 \end{pmatrix}$ have characteristic polynomial $c(x) = x^2 + 6$, with disc $(c) = -24$.

•*A* and *B* are conjugate over $\mathbb{Z}_{(p)}$ for $p \neq 2,3$.

$$A = \begin{pmatrix} 0 & -6 \\ 1 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 2 \\ -3 & 0 \end{pmatrix} \text{ have characteristic polynomial } c(x) = x^2 + 6, \text{ with } disc(c) = -24.$$

•*A* and *B* are conjugate over $\mathbb{Z}_{(p)}$ for $p \neq 2,3$.

•
$$C_1 = \begin{pmatrix} -3 & 0 \\ 0 & 1 \end{pmatrix}$$
 yields a conjugating matrix over $\mathbb{Z}_{(2)}$.

$$A = \begin{pmatrix} 0 & -6 \\ 1 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 2 \\ -3 & 0 \end{pmatrix} \text{ have characteristic polynomial } c(x) = x^2 + 6, \text{ with } \text{disc}(c) = -24.$$

• *A* and *B* are conjugate over $\mathbb{Z}_{(p)}$ for $p \neq 2,3$.
• $C_1 = \begin{pmatrix} -3 & 0 \\ 0 & 1 \end{pmatrix}$ yields a conjugating matrix over $\mathbb{Z}_{(2)}$.
• $C_2 = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$ yields a conjugating matrix over $\mathbb{Z}_{(3)}$.

$$A = \begin{pmatrix} 0 & -6 \\ 1 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 2 \\ -3 & 0 \end{pmatrix} \text{ have characteristic polynomial } c(x) = x^2 + 6, \text{ with } \text{disc}(c) = -24.$$

• *A* and *B* are conjugate over $\mathbb{Z}_{(p)}$ for $p \neq 2,3$.
• $C_1 = \begin{pmatrix} -3 & 0 \\ 0 & 1 \end{pmatrix}$ yields a conjugating matrix over $\mathbb{Z}_{(2)}$.

- $C_2 = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$ yields a conjugating matrix over $\mathbb{Z}_{(3)}$.
- •A and B are not conjugate over \mathbb{Z} .

$$A = \begin{pmatrix} 0 & -6 \\ 1 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 2 \\ -3 & 0 \end{pmatrix} \text{ have characteristic polynomial } c(x) = x^2 + 6, \text{ with } \text{disc}(c) = -24.$$

• *A* and *B* are conjugate over $\mathbb{Z}_{(p)}$ for $p \neq 2,3$.
• $C_1 = \begin{pmatrix} -3 & 0 \\ 0 & 1 \end{pmatrix}$ yields a conjugating matrix over $\mathbb{Z}_{(2)}$.
• $C_2 = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$ yields a conjugating matrix over $\mathbb{Z}_{(3)}$.
• *A* and *B* are not conjugate over \mathbb{Z} .

$$A = \begin{pmatrix} 0 & -6 \\ 1 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 2 \\ -3 & 0 \end{pmatrix} \text{ have characteristic polynomial } c(x) = x^2 + 6, \text{ with}$$

disc(c) = - 24.
• A and B are conjugate over $\mathbb{Z}_{(p)}$ for $p \neq 2,3$.
• $C_1 = \begin{pmatrix} -3 & 0 \\ 0 & 1 \end{pmatrix}$ yields a conjugating matrix over $\mathbb{Z}_{(2)}$.
• $C_2 = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$ yields a conjugating matrix over $\mathbb{Z}_{(3)}$.
• A and B are not conjugate over \mathbb{Z} .

$$A = \begin{pmatrix} 0 & -6 \\ 1 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 2 \\ -3 & 0 \end{pmatrix} \text{ have characteristic polynomial } c(x) = x^2 + 6, \text{ with}$$

disc(c) = - 24.
• A and B are conjugate over $\mathbb{Z}_{(p)}$ for $p \neq 2,3$.
• $C_1 = \begin{pmatrix} -3 & 0 \\ 0 & 1 \end{pmatrix}$ yields a conjugating matrix over $\mathbb{Z}_{(2)}$.
• $C_2 = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$ yields a conjugating matrix over $\mathbb{Z}_{(3)}$.
• A and B are not conjugate over \mathbb{Z}

•
$$f(x, y) = det(xC_1 + yC_2) = -3x^2 - 2y^2$$
 realizes a unit over some extension.

$$A = \begin{pmatrix} 0 & -6 \\ 1 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 2 \\ -3 & 0 \end{pmatrix} \text{ have characteristic polynomial } c(x) = x^2 + 6, \text{ with } \text{disc}(c) = -24.$$

• *A* and *B* are conjugate over $\mathbb{Z}_{(p)}$ for $p \neq 2,3$.
• $C_1 = \begin{pmatrix} -3 & 0 \\ 0 & 1 \end{pmatrix}$ yields a conjugating matrix over $\mathbb{Z}_{(2)}$.
• $C_2 = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$ yields a conjugating matrix over $\mathbb{Z}_{(3)}$.
• *A* and *B* are not conjugate over \mathbb{Z} .

•
$$f(x, y) = \det(xC_1 + yC_2) = -3x^2 - 2y^2$$
 realizes a unit over some extension.
• $f(i,1) = 1$ so $iC_1 + C_2 = \begin{pmatrix} -3i & 2\\ 1 & i \end{pmatrix}$ conjugates A to B .

$$A = \begin{pmatrix} 0 & -6 \\ 1 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 2 \\ -3 & 0 \end{pmatrix} \text{ have characteristic polynomial } c(x) = x^2 + 6, \text{ with}$$

disc(c) = - 24.
• A and B are conjugate over $\mathbb{Z}_{(p)}$ for $p \neq 2,3$.
• $C_1 = \begin{pmatrix} -3 & 0 \\ 0 & 1 \end{pmatrix}$ yields a conjugating matrix over $\mathbb{Z}_{(2)}$.
• $C_2 = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$ yields a conjugating matrix over $\mathbb{Z}_{(3)}$.

Theorem of Guralnick (1980): $A \sim_{\mathbb{Z}_{(p)}} B$ over for all prime ideals $p \iff A \sim B$ over some finite integral extension E of \mathbb{Z} .

I refer to the problem of determining the algebraic extension over which locally conjugate matrices are conjugate as the **conjugacy extension problem.**

$$A = \begin{pmatrix} 0 & -6 \\ 1 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 2 \\ -3 & 0 \end{pmatrix} \text{ have characteristic polynomial } c(x) = x^2 + 6, \text{ with } \text{disc}(c) = -24.$$

• *A* and *B* are conjugate over $\mathbb{Z}_{(p)}$ for $p \neq 2,3$.
• $C_1 = \begin{pmatrix} -3 & 0 \\ 0 & 1 \end{pmatrix}$ yields a conjugating matrix over $\mathbb{Z}_{(2)}$.
• $C_2 = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$ yields a conjugating matrix over $\mathbb{Z}_{(3)}$.
• *A* and *B* are not conjugate over \mathbb{Z} .

•
$$f(x, y) = \det(xC_1 + yC_2) = -3x^2 - 2y^2$$
 realizes a unit over some extension.
• $f(i,1) = 1$ so $iC_1 + C_2 = \begin{pmatrix} -3i & 2\\ 1 & i \end{pmatrix}$ conjugates A to B .

Correspondence for an integral domain R

Rebecca Afandi

Correspondence for an integral domain *R*

• The Latimer and MacDuffee correspondence can be generalized to hold over any integral domain R.

• The Latimer and MacDuffee correspondence can be generalized to hold over any integral domain R.

For
$$f = \prod_{i=1}^{m} f_i$$
, a **fractional** $R[\alpha]$ -ideal is an $R[\alpha]$ -module within
$$\prod_{i=1}^{m} \operatorname{Frac}(R)(\alpha_i)$$
 which is also a free R -module of rank deg (f) .

- The Latimer and MacDuffee correspondence can be generalized to hold over any integral domain R.
- Let $\mathscr{I}_{R[\alpha]}$ denote the set of fractional $R[\alpha]$ -ideals.

- The Latimer and MacDuffee correspondence can be generalized to hold over any integral domain R.
- Let $\mathscr{I}_{R[\alpha]}$ denote the set of fractional $R[\alpha]$ -ideals.

$$\psi_{R} : \mathscr{M}_{f}/_{\sim R} \to \mathscr{I}_{R[\alpha]}/_{\cong_{R[\alpha]}}$$
$$[A]_{R} \mapsto [I]_{R[\alpha]}$$

There is a bijection

- The Latimer and MacDuffee correspondence can be generalized to hold over any integral domain R.
- Let $\mathscr{F}_{R[\alpha]}$ denote the set of fractional $R[\alpha]$ -ideals. $\psi_R : \mathscr{M}_f/_{\sim R} \to \mathscr{F}_{R[\alpha]}/_{\cong_{R[\alpha]}}$ There is a bijection $[A]_R \mapsto [I]_{R[\alpha]}$
- For $A \in \mathbb{Z}^{n \times n}$ and $\mathbb{Z} \subseteq R$, we have that $\psi_R([A]) = R \bigotimes_{\mathbb{Z}} \psi_{\mathbb{Z}}([A])$.

Rebecca Afandi

- The Latimer and MacDuffee correspondence can be generalized to hold over any integral domain R.
- Let $\mathscr{I}_{R[\alpha]}$ denote the set of fractional $R[\alpha]$ -ideals.

$$\psi_{R} : \mathscr{M}_{f}/_{\sim R} \to \mathscr{I}_{R[\alpha]}/_{\cong_{R[\alpha]}}$$
$$[A]_{R} \mapsto [I]_{R[\alpha]}$$

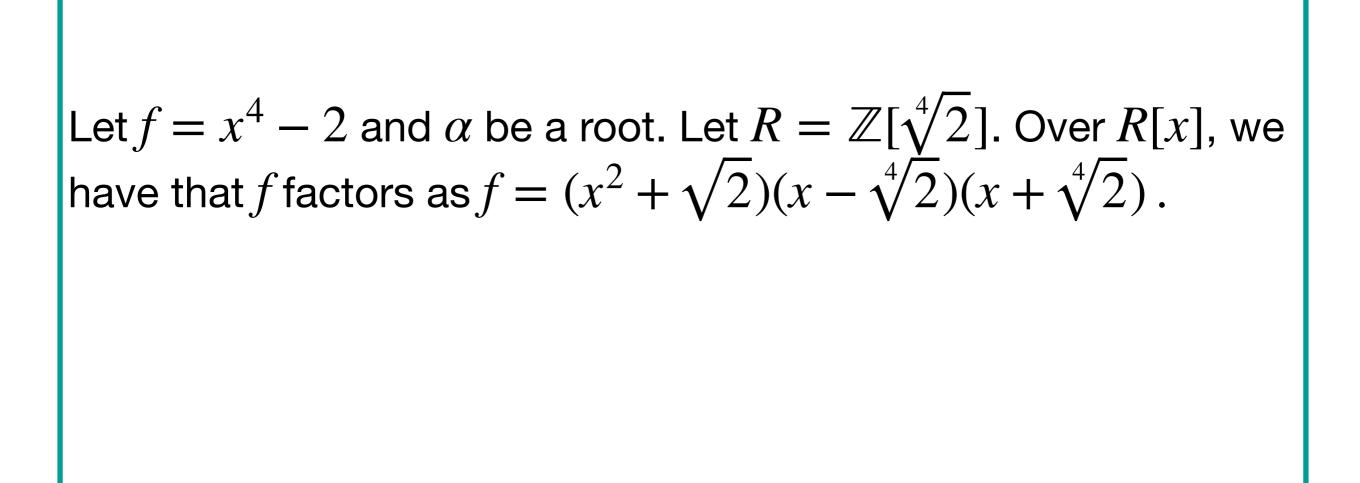
If
$$[A]_{\sim \mathbb{Z}} \leftrightarrow [I] = [\bigoplus p_i(\alpha)\mathbb{Z}],$$

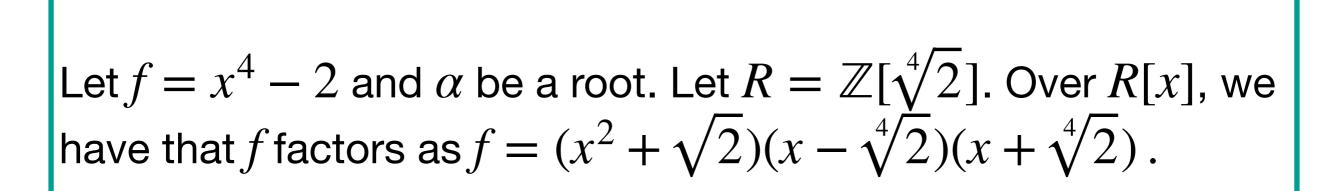
$$\begin{split} & [A]_{\sim R} \leftrightarrow [R \otimes I] = [\bigoplus p_i(\tilde{\alpha}) R] \text{ where the form of } \tilde{\alpha} \text{ depends on the} \\ & \text{factorization of } f \text{ in } R[x] \end{split}$$

Rebecca Afandi

There is a bijection

Rebecca Afandi





Let
$$\alpha_1$$
 denote a root of $x^2 + \sqrt{2}$.

Rebecca Afandi

Let
$$f = x^4 - 2$$
 and α be a root. Let $R = \mathbb{Z}[\sqrt[4]{2}]$. Over $R[x]$, we have that f factors as $f = (x^2 + \sqrt{2})(x - \sqrt[4]{2})(x + \sqrt[4]{2})$.
Let α_1 denote a root of $x^2 + \sqrt{2}$.
 $[C_f]_{\mathbb{Z}} \leftrightarrow [\mathbb{Z}[\alpha]]_{\mathbb{Z}[\alpha]} = [1\mathbb{Z} \oplus \alpha\mathbb{Z} \oplus \alpha^2\mathbb{Z} \oplus \alpha^3\mathbb{Z}]_{\mathbb{Z}[\alpha]}$ while $[C_f]_R \leftrightarrow [R \otimes_{\mathbb{Z}} \mathbb{Z}[\alpha]]_{R[\alpha]}$

Let
$$f = x^4 - 2$$
 and α be a root. Let $R = \mathbb{Z}[\sqrt[4]{2}]$. Over $R[x]$, we have that f factors as $f = (x^2 + \sqrt{2})(x - \sqrt[4]{2})(x + \sqrt[4]{2})$.
Let α_1 denote a root of $x^2 + \sqrt{2}$.
 $[C_f]_{\mathbb{Z}} \leftrightarrow [\mathbb{Z}[\alpha]]_{\mathbb{Z}[\alpha]} = [1\mathbb{Z} \oplus \alpha\mathbb{Z} \oplus \alpha^2\mathbb{Z} \oplus \alpha^3\mathbb{Z}]_{\mathbb{Z}[\alpha]}$ while $[C_f]_R \leftrightarrow [R \otimes_{\mathbb{Z}} \mathbb{Z}[\alpha]]_{R[\alpha]}$

Let
$$f = x^4 - 2$$
 and α be a root. Let $R = \mathbb{Z}[\sqrt[4]{2}]$. Over $R[x]$, we have that f factors as $f = (x^2 + \sqrt{2})(x - \sqrt[4]{2})(x + \sqrt[4]{2})$.
Let α_1 denote a root of $x^2 + \sqrt{2}$.
 $[C_f]_{\mathbb{Z}} \leftrightarrow [\mathbb{Z}[\alpha]]_{\mathbb{Z}[\alpha]} = [1\mathbb{Z} \oplus \alpha\mathbb{Z} \oplus \alpha^2\mathbb{Z} \oplus \alpha^3\mathbb{Z}]_{\mathbb{Z}[\alpha]}$ while
 $[C_f]_R \leftrightarrow [R \otimes_{\mathbb{Z}} \mathbb{Z}[\alpha]]_{R[\alpha]}$
 $= [(1,1,1)R \oplus (\alpha_1, \sqrt[4]{2}, -\sqrt[4]{2})R \oplus ... \oplus (\alpha_1^3, \sqrt[4]{2}^3, -\sqrt[4]{2}^3)R]_{R[\alpha]}$

Rebecca Afandi

Input: Integral matrices *A* and *B* and a ring *R*. Tests if $A \sim_R B$ and if yes, returns $C \in GL_n(R)$ with $C^{-1}AC = B$.

Input: Integral matrices *A* and *B* and a ring *R*. Tests if $A \sim_R B$ and if yes, returns $C \in GL_n(R)$ with $C^{-1}AC = B$.

• Step 1: From A and B, find $R \otimes I$ and $R \otimes J$.

Let
$$f = x^2 + 23$$
, $K := \mathbb{Q}(\alpha) = \mathbb{Q}[x]/(f)$,
 $L := \mathbb{Q}[x]/(x^3 + 6x^2 + 9x - 23)$ and $R = \mathcal{O}_L$.

• Step 1: From A and B, find $R \otimes I$ and $R \otimes J$.

Let
$$f = x^2 + 23$$
, $K := \mathbb{Q}(\alpha) = \mathbb{Q}[x]/(f)$,
 $L := \mathbb{Q}[x]/(x^3 + 6x^2 + 9x - 23)$ and $R = \mathcal{O}_L$.

• Step 1: From A and B, find $R \otimes I$ and $R \otimes J$.

$$A := \begin{pmatrix} -1 & 2 \\ -12 & 1 \end{pmatrix} \leftrightarrow R \otimes I := 2R \oplus (1+\alpha)R$$

and

$$B := \begin{pmatrix} 1 & 4 \\ -6 & -1 \end{pmatrix} \leftrightarrow R \otimes J := 4R \oplus (-1 + \alpha)R$$

Rebecca Afandi

Let
$$f = x^2 + 23$$
, $K := \mathbb{Q}(\alpha) = \mathbb{Q}[x]/(f)$,
 $L := \mathbb{Q}[x]/(x^3 + 6x^2 + 9x - 23)$ and $R = \mathcal{O}_L$.

- Step 1: From A and B, find $R \otimes I$ and $R \otimes J$.
- Step 2: Find multiplicator ring of $R \otimes I$ and $R \otimes J$. If not the same, $A \not\sim_R B$.

Rebecca Afandi

Let
$$f = x^2 + 23$$
, $K := \mathbb{Q}(\alpha) = \mathbb{Q}[x]/(f)$,
 $L := \mathbb{Q}[x]/(x^3 + 6x^2 + 9x - 23)$ and $R = \mathcal{O}_L$.

- Step 1: From A and B, find $R \otimes I$ and $R \otimes J$.
- Step 2: Find multiplicator ring of $R \otimes I$ and $R \otimes J$. If not the same, $A \not\sim_R B$.

$$\mathcal{O}_{K} = (I : I) = (J : J)$$

$$\mathcal{O} := (R \otimes I : R \otimes I) = R \otimes (I : I)$$

$$= 1R \oplus \left(\frac{1+\alpha}{2}\right)R$$

Rebecca Afandi

Let
$$f = x^2 + 23$$
, $K := \mathbb{Q}(\alpha) = \mathbb{Q}[x]/(f)$,
 $L := \mathbb{Q}[x]/(x^3 + 6x^2 + 9x - 23)$ and $R = \mathcal{O}_L$.

- Step 1: From A and B, find $R \otimes I$ and $R \otimes J$.
- Step 2: Find multiplicator ring of $R \otimes I$ and $R \otimes J$. If not the same, $A \not\sim_R B$.

$$\mathcal{O}_{K} = (I : I) = (J : J)$$

$$\mathcal{O} := (R \otimes I : R \otimes I) = R \otimes (I : I)$$

$$= 1R \oplus \left(\frac{1+\alpha}{2}\right)R$$

Note: *A* and *B* are locally conjugate iff $\mathbb{Z}_{(p)} \otimes I \cong_{\mathbb{Z}_{(p)}[\alpha]} \mathbb{Z}_{(p)} \otimes J$ iff (I:I) = (J:J).

Rebecca Afandi

Let
$$f = x^2 + 23$$
, $K := \mathbb{Q}(\alpha) = \mathbb{Q}[x]/(f)$,
 $L := \mathbb{Q}[x]/(x^3 + 6x^2 + 9x - 23)$ and $R = \mathcal{O}_L$.

- Step 1: From A and B, find $R \otimes I$ and $R \otimes J$.
- Step 2: Find multiplicator ring of $R \otimes I$ and $R \otimes J$. If not the same, $A \not\sim_R B$.
- Step 3: Test if $R \otimes (I : J)$ principal. If not, $A \not\sim_R B$. Otherwise, compute change of basis.

Rebecca Afandi

Let
$$f = x^2 + 23$$
, $K := \mathbb{Q}(\alpha) = \mathbb{Q}[x]/(f)$,
 $L := \mathbb{Q}[x]/(x^3 + 6x^2 + 9x - 23)$ and $R = \mathcal{O}_L$.

- Step 1: From A and B, find $R \otimes I$ and $R \otimes J$.
- Step 2: Find multiplicator ring of $R \otimes I$ and $R \otimes J$. If not the same, $A \not\sim_R B$.
- Step 3: Test if $R \otimes (I : J)$ principal. If not, $A \not\sim_R B$. Otherwise, compute change of basis.

In \mathcal{O} , $R \otimes (I : J) = (\gamma)$.

Let
$$f = x^2 + 23$$
, $K := \mathbb{Q}(\alpha) = \mathbb{Q}[x]/(f)$,
 $L := \mathbb{Q}[x]/(x^3 + 6x^2 + 9x - 23)$ and $R = \mathcal{O}_L$.

- Step 1: From A and B, find $R \otimes I$ and $R \otimes J$.
- Step 2: Find multiplicator ring of $R \otimes I$ and $R \otimes J$. If not the same, $A \not\sim_R B$.
- Step 3: Test if $R \otimes (I : J)$ principal. If not, $A \not\sim_R B$. Otherwise, compute change of basis.

 $\ln \mathcal{O}, R \otimes (I:J) = (\gamma).$

Then $R \otimes I = \gamma(R \otimes J)$. So $R \otimes I$ has R-bases

 $\{2, 1 + \alpha\}$ and $\{4\gamma, \gamma(-1 + \alpha)\}$.

Let
$$f = x^2 + 23$$
, $K := \mathbb{Q}(\alpha) = \mathbb{Q}[x]/(f)$,
 $L := \mathbb{Q}[x]/(x^3 + 6x^2 + 9x - 23)$ and $R = \mathcal{O}_L$.

- Step 1: From A and B, find $R \otimes I$ and $R \otimes J$.
- Step 2: Find multiplicator ring of $R \otimes I$ and $R \otimes J$. If not the same, $A \not\sim_R B$.
- Step 3: Test if $R \otimes (I : J)$ principal. If not, $A \not\sim_R B$. Otherwise, compute change of basis.

For a particular \mathbb{Z} -basis $\{\mathscr{B}_1, \mathscr{B}_2, \mathscr{B}_3\}$ of R, we find that

$$C = \begin{pmatrix} -\mathscr{B}_1 + \mathscr{B}_3 & -\mathscr{B}_1 - \mathscr{B}_2 \\ 2\mathscr{B}_1 + 3\mathscr{B}_2 + \mathscr{B}_3 & -2\mathscr{B}_1 + 2\mathscr{B}_3 \end{pmatrix}$$

has determinant in R^{\times} and conjugates A to B.

Implementation of Algorithm

Rebecca Afandi

• Implemented algorithm for $R = \mathcal{O}_L$ and for matrices in \mathcal{M}_f with f irreducible using subroutine IsPrincipal in Magma.

- Implemented algorithm for $R = \mathcal{O}_L$ and for matrices in \mathcal{M}_f with f irreducible using subroutine IsPrincipal in Magma.
- IsPrincipal is not valid for objects within a $\operatorname{Frac}(R)$ -algebra of the form $\prod_{i=1}^{m} \operatorname{Frac}(R)(\alpha_i)$

unless
$$R = \mathbb{Z}$$
 (or $m = 1$).

Rebecca Afandi

Hilbert Class Fields

Rebecca Afandi

Hilbert Class Fields

The Hilbert class field of a number field *K*, denoted HCF(*K*), is the maximal unramified abelian extension of *K*.

- The Hilbert class field of a number field *K*, denoted HCF(*K*), is the maximal unramified abelian extension of *K*.
- **Principal ideal theorem:** Let *L* denote the Hilbert class field of *K*. Every fractional \mathcal{O}_{K} -ideal is principal in \mathcal{O}_{L} .

- The Hilbert class field of a number field *K*, denoted HCF(*K*), is the maximal unramified abelian extension of *K*.
- **Principal ideal theorem:** Let *L* denote the Hilbert class field of *K*. Every fractional \mathcal{O}_{K} -ideal is principal in \mathcal{O}_{L} .

•
$$\mathcal{M}_f = K := \mathbb{Q}(\alpha) = \mathbb{Q}[x]/(f) = L = HCF(K)$$

Rebecca Afandi

- The Hilbert class field of a number field *K*, denoted HCF(*K*), is the maximal unramified abelian extension of *K*.
- **Principal ideal theorem:** Let *L* denote the Hilbert class field of *K*. Every fractional \mathcal{O}_{K} -ideal is principal in \mathcal{O}_{L} .
- $\mathcal{M}_f = K := \mathbb{Q}(\alpha) = \mathbb{Q}[x]/(f) = L = HCF(K)$
- However, since $\alpha \in \mathcal{O}_L$, *f* factors further over $\mathcal{O}_L[x]$.

Rebecca Afandi

Let $f = x^2 + 5$ and $K = \mathbb{Q}(\alpha) \cong \mathbb{Q}[x]/(f)$.

$$A = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix} \leftrightarrow I = 2\mathbb{Z} \oplus (\alpha + 1)\mathbb{Z} \text{ (not principal)}$$

Rebecca Afandi

Let $f = x^2 + 5$ and $K = \mathbb{Q}(\alpha) \cong \mathbb{Q}[x]/(f)$.

$$A = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix} \leftrightarrow I = 2\mathbb{Z} \oplus (\alpha + 1)\mathbb{Z} \text{ (not principal)}$$

• Let *L* denote the Hilbert class field of *K* and $R = \mathcal{O}_L$. The *R*-conjugacy class of *A* corresponds to $R \otimes I = (2,2)R \oplus (\alpha + 1, -\alpha + 1)R$.

Let $f = x^2 + 5$ and $K = \mathbb{Q}(\alpha) \cong \mathbb{Q}[x]/(f)$.

$$A = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix} \leftrightarrow I = 2\mathbb{Z} \oplus (\alpha + 1)\mathbb{Z} \text{ (not principal)}$$

- Let *L* denote the Hilbert class field of *K* and $R = \mathcal{O}_L$. The *R*-conjugacy class of *A* corresponds to $R \otimes I = (2,2)R \oplus (\alpha + 1, -\alpha + 1)R$.
- Letting $\{\mathscr{B}_1, \ldots, \mathscr{B}_4\}$ denote a \mathbb{Z} -basis for R, we have $2R \bigoplus (\alpha + 1)R = 2R \bigoplus (-\alpha + 1)R = (g)$ where $g = \mathscr{B}_1 2\mathscr{B}_1 \mathscr{B}_4$.

Rebecca Afandi

Rebecca Afandi

If
$$R \otimes I = (\gamma_1, \gamma_2)R[(\alpha, -\alpha)]$$
 for a generator $(\gamma_1, \gamma_2) \in L(\alpha) \times L(-\alpha) = L \times L$, there are $(r_i, r_i) \in R$ with

If
$$R \otimes I = (\gamma_1, \gamma_2) R[(\alpha, -\alpha)]$$
 for a generator $(\gamma_1, \gamma_2) \in L(\alpha) \times L(-\alpha) = L \times L$, there are $(r_i, r_i) \in R$ with

$$(2,2)(r_1, r_1) + (\alpha + 1, -\alpha + 1)(r_2, r_2) = (\gamma_1, \gamma_2)$$

$$(2,2)(r_3, r_3) + (\alpha + 1, -\alpha + 1)(r_4, r_4) = (\gamma_1\alpha, -\gamma_2\alpha)$$

Rebecca Afandi

If
$$R \otimes I = (\gamma_1, \gamma_2)R[(\alpha, -\alpha)]$$
 for a generator
 $(\gamma_1, \gamma_2) \in L(\alpha) \times L(-\alpha) = L \times L$, there are $(r_i, r_i) \in R$ with
 $(2,2)(r_1, r_1) + (\alpha + 1, -\alpha + 1)(r_2, r_2) = (\gamma_1, \gamma_2)$
 $(2,2)(r_3, r_3) + (\alpha + 1, -\alpha + 1)(r_4, r_4) = (\gamma_1 \alpha, -\gamma_2 \alpha)$

Rebecca Afandi

If
$$R \otimes I = (\gamma_1, \gamma_2) R[(\alpha, -\alpha)]$$
 for a generator
 $(\gamma_1, \gamma_2) \in L(\alpha) \times L(-\alpha) = L \times L$, there are $(r_i, r_i) \in R$ with
 $(2,2)(r_1, r_1) + (\alpha + 1, -\alpha + 1)(r_2, r_2) = (\gamma_1, \gamma_2)$
 $(2,2)(r_3, r_3) + (\alpha + 1, -\alpha + 1)(r_4, r_4) = (\gamma_1 \alpha, -\gamma_2 \alpha)$

Rebecca Afandi

If
$$R \otimes I = (\gamma_1, \gamma_2)R[(\alpha, -\alpha)]$$
 for a generator
 $(\gamma_1, \gamma_2) \in L(\alpha) \times L(-\alpha) = L \times L$, there are $(r_i, r_i) \in R$
with
 $(2,2)(r_1, r_1) + (\alpha + 1, -\alpha + 1)(r_2, r_2) = (\gamma_1, \gamma_2)$
 $(2,2)(r_3, r_3) + (\alpha + 1, -\alpha + 1)(r_4, r_4) = (\gamma_1\alpha, -\gamma_2\alpha)$
(change of basis
also must have
unit determinant)

Rebecca Afandi

If
$$R \otimes I = (\gamma_1, \gamma_2) R[(\alpha, -\alpha)]$$
 for a generator
 $(\gamma_1, \gamma_2) \in L(\alpha) \times L(-\alpha) = L \times L$, there are $(r_i, r_i) \in R$ with
 $(2,2)(r_1, r_1) + (\alpha + 1, -\alpha + 1)(r_2, r_2) = (\gamma_1, \gamma_2)$
 $(2,2)(r_3, r_3) + (\alpha + 1, -\alpha + 1)(r_4, r_4) = (\gamma_1 \alpha, -\gamma_2 \alpha)$

Rebecca Afandi

If
$$R \otimes I = (\gamma_1, \gamma_2) R[(\alpha, -\alpha)]$$
 for a generator $(\gamma_1, \gamma_2) \in L(\alpha) \times L(-\alpha) = L \times L$, there are $(r_i, r_i) \in R$ with

$$(2,2)(r_1, r_1) + (\alpha + 1, -\alpha + 1)(r_2, r_2) = (\gamma_1, \gamma_2)$$

$$(2,2)(r_3, r_3) + (\alpha + 1, -\alpha + 1)(r_4, r_4) = (\gamma_1\alpha, -\gamma_2\alpha)$$

Rebecca Afandi

$$2R \oplus (\alpha + 1)R = 2R \oplus (-\alpha + 1)R = (g)$$
 where
 $g = \mathscr{B}_1 - 2\mathscr{B}_1 - \mathscr{B}_4.$

We may assume $\gamma_1 = g$ and $\gamma_2 = gu$ for some $u \in \mathbb{R}^{\times}$.

Rebecca Afandi

$$2R \oplus (\alpha + 1)R = 2R \oplus (-\alpha + 1)R = (g)$$
 where
 $g = \mathscr{B}_1 - 2\mathscr{B}_1 - \mathscr{B}_4.$

We may assume $\gamma_1 = g$ and $\gamma_2 = gu$ for some $u \in R^{\times}$.

There is no unit u so that there is a solution over R to

$$2R \oplus (\alpha + 1)R = 2R \oplus (-\alpha + 1)R = (g)$$
 where
 $g = \mathscr{B}_1 - 2\mathscr{B}_1 - \mathscr{B}_4.$

We may assume $\gamma_1 = g$ and $\gamma_2 = gu$ for some $u \in R^{\times}$. There is no unit u so that there is a solution over R to

$$(2,2)(r_1, r_1) + (\alpha + 1, -\alpha + 1)(r_2, r_2) = (g, gu)$$

$$(2,2)(r_3, r_3) + (\alpha + 1, -\alpha + 1)(r_4, r_4) = (g\alpha, -gu\alpha)^{-1}$$

$$2R \oplus (\alpha + 1)R = 2R \oplus (-\alpha + 1)R = (g)$$
 where
 $g = \mathscr{B}_1 - 2\mathscr{B}_1 - \mathscr{B}_4.$

We may assume $\gamma_1 = g$ and $\gamma_2 = gu$ for some $u \in R^{\times}$. There is no unit u so that there is a solution over R to

$$(2,2)(r_1, r_1) + (\alpha + 1, -\alpha + 1)(r_2, r_2) = (g, gu)$$

(2,2)(r_3, r_3) + (\alpha + 1, -\alpha + 1)(r_4, r_4) = (g\alpha, -gu\alpha)

Then $(2,2)R \oplus (\alpha + 1, -\alpha + 1)R$ is not principal and so $A \nsim_R C_f$ for R the ring of integers of the Hilbert class field of K.

Rebecca Afandi

Rebecca Afandi

To avoid the difficulty that arises when f factors further, we instead test whether there is R, the ring of integers of a subfield of the Hilbert class field, such that:

To avoid the difficulty that arises when f factors further, we instead test whether there is R, the ring of integers of a subfield of the Hilbert class field, such that:

• f is irreducible in R[x]

To avoid the difficulty that arises when f factors further, we instead test whether there is R, the ring of integers of a subfield of the Hilbert class field, such that:

- f is irreducible in R[x]
- (I:J) is principal in R

f	$\operatorname{disc}(f)$	h _K	A	$A \sim C_f$ over subfield of HCF?
$x^2 - x + 4$	-3 · 5	2	$\left(\begin{array}{rrr} -1 & 2 \\ -3 & 2 \end{array}\right)$	$x^2 + 2x + 4$
$x^{2} + 5$	$-2^{2} \cdot 5$	2	$\left(\begin{array}{cc} -1 & 2 \\ -3 & 1 \end{array}\right)$	No
$x^2 + 10$	$-2^{3} \cdot 5$	2	$\left \begin{array}{cc} 0 & 2 \\ -5 & 0 \end{array} \right)$	x ² + 2
$x^2 - x + 13$	-3 · 17	2	$\left \begin{array}{cc} -1 & 3 \\ -5 & 2 \end{array}\right)$	$x^2 + 8x + 19$
$x^2 + 13$	$-2^{2} \cdot 13$	2	$\left(\begin{array}{cc} -1 & 2 \\ -7 & 1 \end{array}\right)$	No
$x^2 - x + 6$	-23	3	$\left(\begin{array}{rrr} 0 & 2 \\ -3 & 1 \end{array}\right)$	$x^3 + 6x^2 + 9x - 23$
$x^2 - x + 8$	-31	3	$\left(\begin{array}{cc} -1 & 2 \\ -5 & 2 \end{array}\right)$	No
$x^2 + 17$	$-2^{2} \cdot 17$	4	$\left(\begin{array}{cc} -2 & 3 \\ -7 & 2 \end{array}\right)$	No
$x^2 + 21$	$-2^2 \cdot 3 \cdot 7$	4	$\left(\begin{array}{cc} -2 & 5 \\ -5 & 2 \end{array}\right)$	Yes

Rebecca Afandi

f	disc(f)	h _K	A	$A \sim C_f$ over subfield of HCF?
$x^2 - x + 4$	-3 · 5	2	$\left(\begin{array}{cc} -1 & 2 \\ -3 & 2 \end{array}\right)$	$x^2 + 2x + 4$
$x^{2} + 5$	$-2^{2} \cdot 5$	2		A is chosen to correspond to
$x^2 + 10$	$-2^3 \cdot 5$	2	$\begin{pmatrix} 0 & 2 \\ -5 & 0 \end{pmatrix}$ a	non-principal $\mathbb{Z}[\alpha]$ -ideal $^2+2$
$x^2 - x + 13$	-3 · 17	2	$ \left(\begin{array}{rrrr} -1 & 3 \\ -5 & 2 \end{array}\right) $	$x^2 + 8x + 19$
$x^2 + 13$	$-2^{2} \cdot 13$	2	$\left(\begin{array}{cc} -1 & 2 \\ -7 & 1 \end{array}\right)$	No
$x^2 - x + 6$	-23	3	$\left(\begin{array}{cc} 0 & 2 \\ -3 & 1 \end{array}\right)$	$x^3 + 6x^2 + 9x - 23$
$x^2 - x + 8$	-31	3	$\left(\begin{array}{cc} -1 & 2 \\ -5 & 2 \end{array}\right)$	No
$x^2 + 17$	$-2^{2} \cdot 17$	4	$\left(\begin{array}{cc} -2 & 3 \\ -7 & 2 \end{array}\right)$	No
$x^2 + 21$	$-2^2 \cdot 3 \cdot 7$	4	$\left(\begin{array}{cc} -2 & 5 \\ -5 & 2 \end{array}\right)$	Yes

Rebecca Afandi

f	$\operatorname{disc}(f)$	h _K	A	$A \sim C_f$ over subfield of HCF?
$x^2 - x + 4$	-3 · 5	2	$\left(\begin{array}{rrr} -1 & 2 \\ -3 & 2 \end{array}\right)$	$x^2 + 2x + 4$
$x^{2} + 5$	$-2^{2} \cdot 5$	2	$\left(\begin{array}{cc} -1 & 2 \\ -3 & 1 \end{array}\right)$	No
$x^2 + 10$	$-2^{3} \cdot 5$	2	$\left \begin{array}{cc} 0 & 2 \\ -5 & 0 \end{array} \right)$	x ² + 2
$x^2 - x + 13$	-3 · 17	2	$\left \begin{array}{cc} -1 & 3 \\ -5 & 2 \end{array}\right)$	$x^2 + 8x + 19$
$x^2 + 13$	$-2^{2} \cdot 13$	2	$\left(\begin{array}{cc} -1 & 2 \\ -7 & 1 \end{array}\right)$	No
$x^2 - x + 6$	-23	3	$\left(\begin{array}{rrr} 0 & 2 \\ -3 & 1 \end{array}\right)$	$x^3 + 6x^2 + 9x - 23$
$x^2 - x + 8$	-31	3	$\left(\begin{array}{cc} -1 & 2 \\ -5 & 2 \end{array}\right)$	No
$x^2 + 17$	$-2^{2} \cdot 17$	4	$\left(\begin{array}{cc} -2 & 3 \\ -7 & 2 \end{array}\right)$	No
$x^2 + 21$	$-2^2 \cdot 3 \cdot 7$	4	$\left(\begin{array}{cc} -2 & 5 \\ -5 & 2 \end{array}\right)$	Yes

Rebecca Afandi

f	disc(f)	h _K	$A \qquad A \sim \mathcal{C}_f \text{ over subfield of HCF?}$
$x^2 - x + 4$	-3 · 5	2	$\left \begin{array}{ccc} -1 & 2 \\ -3 & 2 \end{array} \right \qquad x^2 + 2x + 4$
x ² + 5	$-2^{2} \cdot 5$	2	$A \sim_{R} C_{f} \text{ for } R \text{ the ring of } A$
x ² + 10	$-2^{3} \cdot 5$	2	$\int_{L} \frac{1}{2} \frac{1}{x^2 + 2} \frac{1}{x^2 + 2x + 4} = \frac{1}{2} \frac{1}{x^2 + 2x + 4}$
$x^2 - x + 13$	-3 · 17	2	$\begin{bmatrix} L - Q[x]/(x + 2x + 4) \\ -3 - 2 \end{bmatrix} - 8x + 19$
$x^2 + 13$	$-2^{2} \cdot 13$	2	$\left \begin{array}{cc} -1 & 2 \\ -7 & 1 \end{array} \right \qquad \qquad No$
$x^2 - x + 6$	-23	3	$\left(\begin{array}{cc} 0 & 2 \\ -3 & 1 \end{array}\right) \qquad \qquad x^3 + 6x^2 + 9x - 23$
$x^2 - x + 8$	-31	3	$ \left(\begin{array}{ccc} -1 & 2 \\ -5 & 2 \end{array}\right) $ No
$x^2 + 17$	$-2^{2} \cdot 17$	4	$ \left(\begin{array}{rrrr} -2 & 3 \\ -7 & 2 \end{array}\right) $ No
$x^2 + 21$	$-2^2 \cdot 3 \cdot 7$	4	$ \left(\begin{array}{ccc} -2 & 5 \\ -5 & 2 \end{array}\right) $ Yes

Rebecca Afandi

f	$\operatorname{disc}(f)$	h _K	A	$A \sim C_f$ over subfield of HCF?
$x^2 - x + 4$	-3 · 5	2	$\left(\begin{array}{rrr} -1 & 2 \\ -3 & 2 \end{array}\right)$	$x^2 + 2x + 4$
$x^{2} + 5$	$-2^{2} \cdot 5$	2	$\left(\begin{array}{cc} -1 & 2 \\ -3 & 1 \end{array}\right)$	No
$x^2 + 10$	$-2^{3} \cdot 5$	2	$\left \begin{array}{cc} 0 & 2 \\ -5 & 0 \end{array} \right)$	x ² + 2
$x^2 - x + 13$	-3 · 17	2	$\left \begin{array}{cc} -1 & 3 \\ -5 & 2 \end{array}\right)$	$x^2 + 8x + 19$
$x^2 + 13$	$-2^{2} \cdot 13$	2	$\left(\begin{array}{cc} -1 & 2 \\ -7 & 1 \end{array}\right)$	No
$x^2 - x + 6$	-23	3	$\left(\begin{array}{rrr} 0 & 2 \\ -3 & 1 \end{array}\right)$	$x^3 + 6x^2 + 9x - 23$
$x^2 - x + 8$	-31	3	$\left(\begin{array}{cc} -1 & 2 \\ -5 & 2 \end{array}\right)$	No
$x^2 + 17$	$-2^{2} \cdot 17$	4	$\left(\begin{array}{cc} -2 & 3 \\ -7 & 2 \end{array}\right)$	No
$x^2 + 21$	$-2^2 \cdot 3 \cdot 7$	4	$\left(\begin{array}{cc} -2 & 5 \\ -5 & 2 \end{array}\right)$	Yes

Rebecca Afandi

Let $f = x^2 + 5$ and $K = \mathbb{Q}(\alpha) \cong \mathbb{Q}[x]/(f)$.

$$A = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix} \leftrightarrow I = 2\mathbb{Z} \oplus (\alpha + 1)\mathbb{Z} \text{ (not principal)}$$

Rebecca Afandi

Let
$$f = x^2 + 5$$
 and $K = \mathbb{Q}(\alpha) \cong \mathbb{Q}[x]/(f)$.
 $A = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix} \leftrightarrow I = 2\mathbb{Z} \oplus (\alpha + 1)\mathbb{Z}$ (not principal)

• We want $(I : \mathbb{Z}[\alpha]) = I$ to be principal.

Let
$$f = x^2 + 5$$
 and $K = \mathbb{Q}(\alpha) \cong \mathbb{Q}[x]/(f)$.
 $A = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix} \leftrightarrow I = 2\mathbb{Z} \oplus (\alpha + 1)\mathbb{Z}$ (not principal)

- We want $(I : \mathbb{Z}[\alpha]) = I$ to be principal.
- The ray class field L (ramifies at 3, which is relatively prime to I) has degree 8 over Q.

Let
$$f = x^2 + 5$$
 and $K = \mathbb{Q}(\alpha) \cong \mathbb{Q}[x]/(f)$.
 $A = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix} \leftrightarrow I = 2\mathbb{Z} \oplus (\alpha + 1)\mathbb{Z}$ (not principal)

- We want $(I : \mathbb{Z}[\alpha]) = I$ to be principal.
- The ray class field L (ramifies at 3, which is relatively prime to I) has degree 8 over Q.
- The subfield $F := \mathbb{Q}[x]/(x^4 12x^3 + 158x^2 + 228x + 3721)$ of *L* satisfies the desired properties.

Let
$$f = x^2 + 5$$
 and $K = \mathbb{Q}(\alpha) \cong \mathbb{Q}[x]/(f)$.
 $A = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix} \leftrightarrow I = 2\mathbb{Z} \oplus (\alpha + 1)\mathbb{Z}$ (not principal)

- We want $(I : \mathbb{Z}[\alpha]) = I$ to be principal.
- The ray class field *L* (ramifies at 3, which is relatively prime to *I*) has degree 8 over *Q*.
- The subfield $F := \mathbb{Q}[x]/(x^4 12x^3 + 158x^2 + 228x + 3721)$ of *L* satisfies the desired properties.

•
$$C = \begin{pmatrix} -\mathscr{B}_2 & -1 - \mathscr{B}_4 \\ 3 + \mathscr{B}_2 + 3\mathscr{B}_4 & -1 - 2\mathscr{B}_2 - 2\mathscr{B}_3 - \mathscr{B}_4 \end{pmatrix}$$
 is a matrix in $\operatorname{GL}_2(\mathscr{O}_F)$ which conjugates \mathscr{C}_f to A .

Rebecca Afandi

Rebecca Afandi

• Is there a way to implement the algorithm to test for $\operatorname{GL}_n(R)$ -conjugacy in the non-irreducible case? Need an algorithm that determines whether an ideal in $\prod_{m=1}^{m} \operatorname{Frac}(R)(\alpha_i) \text{ (as a Frac}(R)-\operatorname{algebra}) \text{ is principal.}$

- Is there a way to implement the algorithm to test for $\operatorname{GL}_n(R)$ -conjugacy in the non-irreducible case? Need an algorithm that determines whether an ideal in $\prod_{m=1}^{m} \operatorname{Frac}(R)(\alpha_i) \text{ (as a Frac}(R)-\operatorname{algebra}) \text{ is principal.}$
- How often does the method of searching through class fields succeed? Is there a nice classification for the cases in which the method works?

- Is there a way to implement the algorithm to test for $\operatorname{GL}_n(R)$ -conjugacy in the non-irreducible case? Need an algorithm that determines whether an ideal in $\prod_{m=1}^{m} \operatorname{Frac}(R)(\alpha_i) \text{ (as a Frac}(R)-\operatorname{algebra}) \text{ is principal.}$
- How often does the method of searching through class fields succeed? Is there a nice classification for the cases in which the method works?
- Should we consider ray class fields which ramify at primes related to the discriminant of *f*?