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• For a -ideal , the multiplicator ring of  is . ℤ[α] I I (I : I)

• If  for , then .I = kJ k ∈ ℚ(α) (I : I) = (J : J)

• and These 

matrices are not -conjugate.

ℤ[α] ↔ Cf = ( 0 1
−23 0) 𝒪K ↔ A = ( −1 2

−12 1) .

ℤ

• . Each Picard group has 
order 3, so there are 6 -conjugacy classes within  .
ICM(ℤ[α]) = Pic(ℤ[α]) ⊔ Pic(𝒪K)

ℤ ℳf

ICM(ℤ[α]) = ⊔𝒪 ICM𝒪(ℤ[α]) ⊇ ⊔𝒪 Pic(𝒪)
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• For  square-free, integral matrices in   are 
-conjugate for .

f ℳf ℤ(p)
p ∤ disc( f )

• A local-global principal does not hold for matrix 
conjugacy: A ∼ℤ(p)

B ∀ p ⇏ A ∼ℤ B

• I refer to matrices which satisfy  for all primes  
as locally conjugate. 

A ∼ℤ(p)
B p

-conjugacyℤ(p)
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be generalized to hold over any integral domain .R

Correspondence for an integral domain R

For , a fractional -ideal is an -module within 

 which is also a free -module of rank .

f =
m

∏
i=1

fi R[α] R[α]
m

∏
i=1

Frac(R)(αi) R deg( f )
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• The Latimer and MacDuffee correspondence can 
be generalized to hold over any integral domain .R

•Let  denote the set of fractional -ideals.ℐR[α] R[α]

•There is a bijection   
ψR : ℳf /∼R → ℐR[α]/≅R[α]

[A]R ↦ [I]R[α]

• For  and , we have that 
.

A ∈ ℤn×n ℤ ⊆ R
ψR([A]) = R ⊗ℤ ψℤ([A])

Correspondence for an integral domain R

If ,

then 

 where the form of  depends on the 

factorization of  in 

[A]∼ℤ ↔ [I] = [⊕pi(α)ℤ]

[A]∼R ↔ [R ⊗ I] = [⊕pi(α̃)R] α̃
f R[x]
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Let  and  be a root. Let . Over , we 
have that  factors as 

f = x4 − 2 α R = ℤ[ 4 2] R[x]
f f = (x2 + 2)(x − 4 2)(x + 4 2) .

Let  denote a root of .α1 x2 + 2

[Cf ]ℤ ↔ [ℤ[α]]ℤ[α] = [1ℤ ⊕ αℤ ⊕ α2ℤ ⊕ α3ℤ]ℤ[α] while 

[Cf ]R ↔ [R ⊗ℤ ℤ[α]]R[α]

Example:  factors furtherf

= [(1,1,1)R ⊕ (α1,
4 2, − 4 2)R ⊕ . . . ⊕ (α3

1 , 4 2
3
, − 4 2

3
)R]R[α]



Rebecca Afandi Conjugacy of Integral Matrices

Algorithm if R ⊇ ℤ

Let , , 
 and .

f = x2 + 23 K := ℚ(α) = ℚ[x]/( f )
L := ℚ[x]/(x3 + 6x2 + 9x − 23) R = 𝒪L

Input: Integral matrices  and   and a ring .                                            
Tests if  and if yes, returns  with .

A B R
A ∼R B C ∈ GLn(R) C−1AC = B



Rebecca Afandi Conjugacy of Integral Matrices

Algorithm if R ⊇ ℤ

• Step 1: From  and , 
find  and .


A B
R ⊗ I R ⊗ J

Let , , 
 and .

f = x2 + 23 K := ℚ(α) = ℚ[x]/( f )
L := ℚ[x]/(x3 + 6x2 + 9x − 23) R = 𝒪L

Input: Integral matrices  and   and a ring .                                            
Tests if  and if yes, returns  with .

A B R
A ∼R B C ∈ GLn(R) C−1AC = B



Rebecca Afandi Conjugacy of Integral Matrices

Algorithm if R ⊇ ℤ

• Step 1: From  and , 
find  and .


A B
R ⊗ I R ⊗ J

Let , , 
 and .

f = x2 + 23 K := ℚ(α) = ℚ[x]/( f )
L := ℚ[x]/(x3 + 6x2 + 9x − 23) R = 𝒪L



Rebecca Afandi Conjugacy of Integral Matrices

Algorithm if R ⊇ ℤ

• Step 1: From  and , 
find  and .


A B
R ⊗ I R ⊗ J




 and


A := ( −1 2
−12 1) ↔ R ⊗ I := 2R ⊕ (1 + α)R

B := ( 1 4
−6 −1) ↔ R ⊗ J := 4R ⊕ (−1 + α)R

Let , , 
 and .

f = x2 + 23 K := ℚ(α) = ℚ[x]/( f )
L := ℚ[x]/(x3 + 6x2 + 9x − 23) R = 𝒪L
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Algorithm if ℤ ⊆ R

• Step 1: From  and , 
find  and .


• Step 2:  Find multiplicator 
ring of  and . 
If not the same, .


A B
R ⊗ I R ⊗ J

R ⊗ I R ⊗ J
A ≁R B

Let , , 
 and .

f = x2 + 23 K := ℚ(α) = ℚ[x]/( f )
L := ℚ[x]/(x3 + 6x2 + 9x − 23) R = 𝒪L

𝒪K = (I : I) = (J : J)
𝒪:= (R ⊗ I : R ⊗ I) = R ⊗ (I : I)

= 1R ⊕ ( 1 + α
2 ) R

Note:  and  are locally conjugate 
iff   iff

A B
ℤ(p) ⊗ I ≅ℤ(p)[α] ℤ(p) ⊗ J

(I : I) = (J : J) .
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• Step 1: From  and , 
find  and .


• Step 2:  Find multiplicator 
ring of  and . 
If not the same, .


• Step 3: Test if  
principal. If not, . 
Otherwise, compute 
change of basis.


A B
R ⊗ I R ⊗ J

R ⊗ I R ⊗ J
A ≁R B

R ⊗ (I : J)
A ≁R B

In , .𝒪 R ⊗ (I : J) = (γ)

Then . So 
 has -bases 


 and .

R ⊗ I = γ(R ⊗ J)
R ⊗ I R

{2,1 + α} {4γ, γ(−1 + α)}

Let , , 
 and .

f = x2 + 23 K := ℚ(α) = ℚ[x]/( f )
L := ℚ[x]/(x3 + 6x2 + 9x − 23) R = 𝒪L
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Algorithm if ℤ ⊆ R

For a particular -basis 
of , we find that


 

has determinant in  and 
conjugates  to .

ℤ
{ℬ1, ℬ2, ℬ3} R

C = ( −ℬ1 + ℬ3 −ℬ1 − ℬ2

2ℬ1 + 3ℬ2 + ℬ3 −2ℬ1 + 2ℬ3)
R×

A B

• Step 1: From  and , 
find  and .


• Step 2:  Find multiplicator 
ring of  and . 
If not the same, .


• Step 3: Test if  
principal. If not, . 
Otherwise, compute 
change of basis.


A B
R ⊗ I R ⊗ J

R ⊗ I R ⊗ J
A ≁R B

R ⊗ (I : J)
A ≁R B

Let , , 
 and .

f = x2 + 23 K := ℚ(α) = ℚ[x]/( f )
L := ℚ[x]/(x3 + 6x2 + 9x − 23) R = 𝒪L
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• Implemented algorithm for  and for 
matrices in  with  irreducible using subroutine 
IsPrincipal in Magma. 

R = 𝒪L
ℳf f

• IsPrincipal is not valid for objects within a  

-algebra of the form  

unless  (or ).

Frac(R)
m

∏
i=1

Frac(R)(αi)

R = ℤ m = 1

Implementation of Algorithm
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• The Hilbert class field of a number field , denoted 
, is the maximal unramified abelian extension of 

.

K
HCF(K)
K

• Principal ideal theorem: Let  denote the Hilbert class 
field of . Every fractional -ideal is principal in . 

L
K 𝒪K 𝒪L

•  ℳf ↝ K := ℚ(α) = ℚ[x]/( f ) ↝ L = HCF(K)

• However, since ,  factors further over .α ∈ 𝒪L f 𝒪L[x]

Hilbert Class Fields
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Hilbert class field does not always solve 

the conjugacy extension problem

Let  and .


  (not principal)


f = x2 + 5 K = ℚ(α) ≅ ℚ[x]/( f )

A = (−1 2
−3 1) ↔ I = 2ℤ ⊕ (α + 1)ℤ
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• Let  denote the Hilbert class field of  and . The 
-conjugacy class of  corresponds to 

L K R = 𝒪L
R A
R ⊗ I = (2,2)R ⊕ (α + 1, − α + 1)R .
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• Let  denote the Hilbert class field of  and . The 
-conjugacy class of  corresponds to 

L K R = 𝒪L
R A
R ⊗ I = (2,2)R ⊕ (α + 1, − α + 1)R .

• Letting  denote a -basis for , we have{ℬ1, . . . , ℬ4} ℤ R
2R ⊕ (α + 1)R = 2R ⊕ (−α + 1)R = (g) where 
g = ℬ1 − 2ℬ1 − ℬ4 .

Hilbert class field does not always solve 

the conjugacy extension problem

Let  and .


  (not principal)


f = x2 + 5 K = ℚ(α) ≅ ℚ[x]/( f )

A = (−1 2
−3 1) ↔ I = 2ℤ ⊕ (α + 1)ℤ
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, there are  
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also must have 
unit determinant)
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Hilbert class field does not always solve 

the conjugacy extension problem

We may assume  and  for some . γ1 = g γ2 = gu u ∈ R×

2R ⊕ (α + 1)R = 2R ⊕ (−α + 1)R = (g) where 
g = ℬ1 − 2ℬ1 − ℬ4 .
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There is no unit  so that there is a solution over  tou R
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There is no unit  so that there is a solution over  tou R

.
(2,2)(r1, r1) + (α + 1, − α + 1)(r2, r2) = (g, gu)
(2,2)(r3, r3) + (α + 1, − α + 1)(r4, r4) = (gα, − guα)

Hilbert class field does not always solve 

the conjugacy extension problem

We may assume  and  for some . γ1 = g γ2 = gu u ∈ R×

2R ⊕ (α + 1)R = 2R ⊕ (−α + 1)R = (g) where 
g = ℬ1 − 2ℬ1 − ℬ4 .
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There is no unit  so that there is a solution over  tou R

.
(2,2)(r1, r1) + (α + 1, − α + 1)(r2, r2) = (g, gu)
(2,2)(r3, r3) + (α + 1, − α + 1)(r4, r4) = (gα, − guα)

Then  is not principal and so 
 for  the ring of integers of the Hilbert class field of 

.

(2,2)R ⊕ (α + 1, − α + 1)R
A ≁R Cf R
K

Hilbert class field does not always solve 

the conjugacy extension problem

We may assume  and  for some . γ1 = g γ2 = gu u ∈ R×

2R ⊕ (α + 1)R = 2R ⊕ (−α + 1)R = (g) where 
g = ℬ1 − 2ℬ1 − ℬ4 .
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To avoid the difficulty that arises when  factors further, we 
instead test whether there is , the ring of integers of a 
subfield of the Hilbert class field, such that:

f
R
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To avoid the difficulty that arises when  factors further, we 
instead test whether there is , the ring of integers of a 
subfield of the Hilbert class field, such that:

f
R

•  is irreducible in f R[x]

•  is principal in (I : J) R

Subfields of the Hilbert class field
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Subfields of the Hilbert class field

 is chosen to 
correspond to 
a non-principal 

-ideal

A

ℤ[α]
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Subfields of the Hilbert class field

 for  the ring of 
integers of 

A ∼R Cf R

L = ℚ[x]/(x2 + 2x + 4)
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Example: Generalized method

Let  and .


  (not principal)

f = x2 + 5 K = ℚ(α) ≅ ℚ[x]/( f )

A = (−1 2
−3 1) ↔ I = 2ℤ ⊕ (α + 1)ℤ
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• We want  to be principal.(I : ℤ[α]) = I
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• We want  to be principal.(I : ℤ[α]) = I

• The ray class field  (ramifies at 3, which is relatively prime to ) has 
degree 8 over .

L I
ℚ
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degree 8 over .
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• We want  to be principal.(I : ℤ[α]) = I

• The ray class field  (ramifies at 3, which is relatively prime to ) has 
degree 8 over .

L I
ℚ

• The subfield  of  
satisfies the desired properties.

F := ℚ[x]/(x4 − 12x3 + 158x2 + 228x + 3721) L

• is a matrix in 

 which conjugates   to .

C = ( −ℬ2 −1 − ℬ4

3 + ℬ2 + 3ℬ4 −1 − 2ℬ2 − 2ℬ3 − ℬ4)
GL2(𝒪F) 𝒞f A

Example: Generalized method

Let  and .


  (not principal)

f = x2 + 5 K = ℚ(α) ≅ ℚ[x]/( f )

A = (−1 2
−3 1) ↔ I = 2ℤ ⊕ (α + 1)ℤ
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• Is there a way to implement the algorithm to test for 
-conjugacy in the non-irreducible case? Need an 

algorithm that determines whether an ideal in 

 (as a -algebra) is principal.

GLn(R)
m

∏
i=1

Frac(R)(αi) Frac(R)
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• How often does the method of searching through class 
fields succeed? Is there a nice classification for the cases 
in which the method works?
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• Is there a way to implement the algorithm to test for 
-conjugacy in the non-irreducible case? Need an 

algorithm that determines whether an ideal in 

 (as a -algebra) is principal.

GLn(R)
m

∏
i=1

Frac(R)(αi) Frac(R)

• How often does the method of searching through class 
fields succeed? Is there a nice classification for the cases 
in which the method works?

• Should we consider ray class fields which ramify at 
primes related to the discriminant of ? f

Open problems


