Properties in $A+B$ Rings

Alexandra Epstein

University of Colorado Colorado Springs ARCS Seminar
April 6, 2022

Table of Contents

(1) Introduction
(2) Definitions
(3) $A+B$ and $A+Q B$ Construction
4. Properties in $A+B$ and $A+Q B$ Rings
(5) h-local in $A+B$ and $A+Q B$

Introduction

Properties in $A+B$ Rings

Alexandra
Epstein

- Annihilators in commutative rings

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
$A+Q B$ Rings
h-local in
$A+B$ and $A+Q B$

Introduction

Properties in A+B Rings

Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$\mathrm{A}+\mathrm{B}$ and
$A+Q B$ Rings
h-local in
$A+B$ and
$A+Q B$

- Annihilators in commutative rings
- Annihilator conditions

Introduction

Properties in $A+B$ Rings

Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
$A+Q B$ Rings
h-local in
$A+B$ and
$A+Q B$

- Annihilators in commutative rings
- Annihilator conditions
- Ideals closed under taking double annihilators of elements/finite subsets

Introduction

Properties in A+B Rings

Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and $A+Q B$ Rings
h-local in $A+B$ and $A+Q B$

- Annihilators in commutative rings
- Annihilator conditions
- Ideals closed under taking double annihilators of elements/finite subsets
- $A+B$ rings used as examples

Introduction

Properties in

A+B Rings
Alexandra
Epstein

- Annihilators in commutative rings
- Annihilator conditions
- Ideals closed under taking double annihilators of elements/finite subsets
- $A+B$ rings used as examples
- Various authors investigated properties of $A+B$ rings, as well as various related constructions (sometimes still using the name ' $A+B$ ring').

Introduction

Properties in

A+B Rings
Alexandra
Epstein

- Annihilators in commutative rings
- Annihilator conditions
- Ideals closed under taking double annihilators of elements/finite subsets
- $A+B$ rings used as examples
- Various authors investigated properties of $A+B$ rings, as well as various related constructions (sometimes still using the name ' $A+B$ ring').
- Focus: look at a variety of properties and determine when $A+B$ satisfies each.

Some possible properties of reduced rings

Properties in A+B Rings

Alexandra Epstein Introduction Definitions
$A+B$ and $A+Q B$ Construction

Properties in $A+B$ and $A+Q B$ Rings
h-local in $A+B$ and $A+Q B$

Definitions

Properties in A+B Rings

Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and $A+Q B$ Rings
h-local in
$A+B$ and $A+Q B$

All rings are assumed to be commutative with $1 \neq 0$.

Definitions

Properties in
$A+B$ Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $A+B$ and A+QB Rings
h-local in
$A+B$ and $A+Q B$

All rings are assumed to be commutative with $1 \neq 0$.
R is a reduced ring if 0 is the only nilpotent element ($x^{n}=0$ implies $x=0$).

Definitions

Properties in
A+B Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and A+QB Rings
h-local in
$A+B$ and $A+Q B$

All rings are assumed to be commutative with $1 \neq 0$.
R is a reduced ring if 0 is the only nilpotent element ($x^{n}=0$ implies $x=0$). An element of R is called regular if it is not a zero divisor, and an ideal of R is called regular if it contains a regular element.

Definitions

Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $A+B$ and $A+Q B$ Rings
h-local in
$A+B$ and $A+Q B$

All rings are assumed to be commutative with $1 \neq 0$.
R is a reduced ring if 0 is the only nilpotent element ($x^{n}=0$ implies $x=0$). An element of R is called regular if it is not a zero divisor, and an ideal of R is called regular if it contains a regular element.

We say $I \subseteq R$ is a minimal prime ideal if it is minimal (under inclusion) with respect to being a prime ideal.

Definitions

Alexandra
Epstein

Introduction
Definitions
$A+B$ and

All rings are assumed to be commutative with $1 \neq 0$.
R is a reduced ring if 0 is the only nilpotent element ($x^{n}=0$ implies $x=0$). An element of R is called regular if it is not a zero divisor, and an ideal of R is called regular if it contains a regular element.

We say $I \subseteq R$ is a minimal prime ideal if it is minimal (under inclusion) with respect to being a prime ideal. We denote the set of all prime ideals of R by $\operatorname{Spec}(R)$.

Definitions

Alexandra
Epstein

Introduction
Definitions
$A+B$ and

All rings are assumed to be commutative with $1 \neq 0$.
R is a reduced ring if 0 is the only nilpotent element ($x^{n}=0$ implies $x=0$). An element of R is called regular if it is not a zero divisor, and an ideal of R is called regular if it contains a regular element.

We say $I \subseteq R$ is a minimal prime ideal if it is minimal (under inclusion) with respect to being a prime ideal. We denote the set of all prime ideals of R by $\operatorname{Spec}(R)$.

We let $Q(R)$ denote the total quotient ring of R (invert all non-zero divisors).

Constructing New Rings

Properties in A+B Rings

Alexandra
Epstein
Let A be a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ with index set \mathcal{A} such that $\bigcap_{\alpha \in \mathcal{A}} P_{\alpha}=0$.
Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
A+QB Rings
h-local in
$A+B$ and
$A+Q B$

Constructing New Rings

Properties in
A+B Rings
Alexandra Epstein

Let A be a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ with index set \mathcal{A} such that $\bigcap P_{\alpha}=0$. Take $\mathcal{I}=\mathcal{A} \times \mathbb{N}$ and for $i=(\alpha, m) \in \mathcal{I}, P_{i}=P_{\alpha}$. $\alpha \in \mathcal{A}$

Definitions
$A+B$ and
$\mathrm{A}+\mathrm{QB}$
Construction
Properties in $\mathrm{A}+\mathrm{B}$ and $A+Q B$ Rings
h-local in $\mathrm{A}+\mathrm{B}$ and $A+Q B$

Constructing New Rings

Properties in
A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $A+B$ and A+QB Rings
h-local in $A+B$ and $A+Q B$

Let A be a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ with index set \mathcal{A} such that $\bigcap P_{\alpha}=0$. Take $\mathcal{I}=\mathcal{A} \times \mathbb{N}$ and for $i=(\alpha, m) \in \mathcal{I}, P_{i}=P_{\alpha}$. $\alpha \in \mathcal{A}$

$A+B$ Construction

Identify A with its image in $\prod_{i \in \mathcal{I}} A / P_{i}$

Constructing New Rings

Properties in
A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $A+B$ and A+QB Rings
h-local in $A+B$ and $A+Q B$

Let A be a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ with index set \mathcal{A} such that $\bigcap P_{\alpha}=0$. Take $\mathcal{I}=\mathcal{A} \times \mathbb{N}$ and for $i=(\alpha, m) \in \mathcal{I}, P_{i}=P_{\alpha}$. $\alpha \in \mathcal{A}$

$A+B$ Construction

Identify A with its image in $\prod_{i \in \mathcal{I}} A / P_{i}$ and let $B=\sum_{i \in \mathcal{I}} A / P_{i}$.

Constructing New Rings

Properties in
A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $A+B$ and A+QB Rings
h-local in $A+B$ and $A+Q B$

Let A be a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ with index set \mathcal{A} such that $\bigcap P_{\alpha}=0$. Take $\mathcal{I}=\mathcal{A} \times \mathbb{N}$ and for $i=(\alpha, m) \in \mathcal{I}, P_{i}=P_{\alpha}$. $\alpha \in \mathcal{A}$

$A+B$ Construction

Identify A with its image in $\prod_{i \in \mathcal{I}} A / P_{i}$ and let $B=\sum_{i \in \mathcal{I}} A / P_{i}$.
$R=A+B$ is our desired ring, with addition and multiplication defined coordinate-wise.

Constructing New Rings

Properties in
A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
A+QB Rings
h-local in
$A+B$ and
$A+Q B$

Let A be a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ with index set \mathcal{A} such that $\bigcap P_{\alpha}=0$. Take $\mathcal{I}=\mathcal{A} \times \mathbb{N}$ and for $i=(\alpha, m) \in \mathcal{I}, P_{i}=P_{\alpha}$. $\alpha \in \mathcal{A}$

$A+B$ Construction

Identify A with its image in $\prod_{i \in \mathcal{I}} A / P_{i}$ and let $B=\sum_{i \in \mathcal{I}} A / P_{i}$.
$R=A+B$ is our desired ring, with addition and multiplication defined coordinate-wise.

Take $a \in A$.

Constructing New Rings

Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and A+QB Rings
h-local in $A+B$ and $A+Q B$

Let A be a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ with index set \mathcal{A} such that $\bigcap P_{\alpha}=0$. Take $\mathcal{I}=\mathcal{A} \times \mathbb{N}$ and for $i=(\alpha, m) \in \mathcal{I}, P_{i}=P_{\alpha}$. $\alpha \in \mathcal{A}$

$A+B$ Construction

Identify A with its image in $\prod_{i \in \mathcal{I}} A / P_{i}$ and let $B=\sum_{i \in \mathcal{I}} A / P_{i}$.
$R=A+B$ is our desired ring, with addition and multiplication defined coordinate-wise.

Take $a \in A$. When viewed in R, we have that a looks like:

$$
\left(\ldots a+P_{i_{1}}, a+P_{(\alpha, 1)}, a+P_{(\alpha, 2)}, a+P_{(\alpha, 3)}, \ldots, a+P_{i_{2}} \ldots\right)
$$

Constructing New Rings

Properties in
A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and A+QB Rings
h-local in $A+B$ and $A+Q B$

Let A be a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ with index set \mathcal{A} such that $\bigcap P_{\alpha}=0$. Take $\mathcal{I}=\mathcal{A} \times \mathbb{N}$ and for $i=(\alpha, m) \in \mathcal{I}, P_{i}=P_{\alpha}$. $\alpha \in \mathcal{A}$

$A+B$ Construction

Identify A with its image in $\prod_{i \in \mathcal{I}} A / P_{i}$ and let $B=\sum_{i \in \mathcal{I}} A / P_{i}$.
$R=A+B$ is our desired ring, with addition and multiplication defined coordinate-wise.

Take $a \in A$. When viewed in R, we have that a looks like:

$$
(\ldots a+P_{i_{1}}, \underbrace{\left.\left.a+P_{(\alpha, 1)}, a+P_{(\alpha, 2)}, a+P_{(\alpha, 3)}, \ldots, a+P_{i_{2}} \ldots\right)\right) ~(\ldots)}_{a \in R \text { constant on each } \alpha \text {-block; } a+P_{\alpha}},
$$

Constructing New Rings

Properties in
A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $A+B$ and A+QB Rings
h-local in
$A+B$ and $A+Q B$

Let A be a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ with index set \mathcal{A} such that $\bigcap_{\alpha}=0$. Take $\mathcal{I}=\mathcal{A} \times \mathbb{N}$ and for $i=(\alpha, m) \in \mathcal{I}, P_{i}=P_{\alpha}$. $\alpha \in \mathcal{A}$

$A+B$ Construction

Identify A with its image in $\prod_{i \in \mathcal{I}} A / P_{i}$ and let $B=\sum_{i \in \mathcal{I}} A / P_{i}$.
$R=A+B$ is our desired ring, with addition and multiplication defined coordinate-wise.

Take $a \in A$ and $b \in B$. So $a+b$ looks like:

Constructing New Rings

Properties in
A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and A+QB Rings
h-local in $A+B$ and $A+Q B$

Let A be a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ with index set \mathcal{A} such that $\bigcap P_{\alpha}=0$. Take $\mathcal{I}=\mathcal{A} \times \mathbb{N}$ and for $i=(\alpha, m) \in \mathcal{I}, P_{i}=P_{\alpha}$. $\alpha \in \mathcal{A}$

$A+B$ Construction

Identify A with its image in $\prod_{i \in \mathcal{I}} A / P_{i}$ and let $B=\sum_{i \in \mathcal{I}} A / P_{i}$.
$R=A+B$ is our desired ring, with addition and multiplication defined coordinate-wise.

Take $a \in A$ and $b \in B$. So $a+b$ looks like:
$\left(\ldots a+P_{i_{1}}, x_{1}+P_{(\alpha, 1)}, a+P_{(\alpha, 2)}, x_{2}+P_{(\alpha, 3)}, \ldots, a+P_{i_{2}} \ldots\right)$

Constructing New Rings

Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and A+QB Rings
h-local in
$A+B$ and $A+Q B$

Let A be a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ with index set \mathcal{A} such that $\bigcap P_{\alpha}=0$. Take $\mathcal{I}=\mathcal{A} \times \mathbb{N}$ and for $i=(\alpha, m) \in \mathcal{I}, P_{i}=P_{\alpha}$. $\alpha \in \mathcal{A}$

$A+B$ Construction

Identify A with its image in $\prod_{i \in \mathcal{I}} A / P_{i}$ and let $B=\sum_{i \in \mathcal{I}} A / P_{i}$.
$R=A+B$ is our desired ring, with addition and multiplication defined coordinate-wise.

Take $a \in A$ and $b \in B$. So $a+b$ looks like:

$$
\left(\ldots a+P_{i_{1}}, x_{1}+P_{(\alpha, 1)}, a+P_{(\alpha, 2)}, x_{2}+P_{(\alpha, 3)}, \ldots, a+P_{i_{2}} \ldots\right)
$$

Note we are only changing $a \in R$ in finitely many components, based on the finitely many nonzero components of b.

Facts and details about $A+B$ rings

Properties in
A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$\mathrm{A}+\mathrm{QB}$
Construction
Properties in
$\mathrm{A}+\mathrm{B}$ and
$A+Q B$ Rings
h-local in
$A+B$ and $A+Q B$
(We will assume from now that $R=A+B$ is constructed as before from a ring A and set of prime ideals \mathcal{P}.)

Facts and details about $A+B$ rings

Properties in
$A+B$ Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$\mathrm{A}+\mathrm{QB}$
Construction
Properties in
$\mathrm{A}+\mathrm{B}$ and
$A+Q B$ Rings
h-local in
$A+B$ and $A+Q B$
(We will assume from now that $R=A+B$ is constructed as before from a ring A and set of prime ideals \mathcal{P}.)

- $0 \in R$ is the element which is zero in every component; $1 \in R$ is the element which is 1 in every component (the image of $1 \in A$ in R).

Facts and details about $A+B$ rings

Properties in
$A+B$ Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$\mathrm{A}+\mathrm{QB}$
Construction
Properties in
$\mathrm{A}+\mathrm{B}$ and $A+Q B$ Rings
h-local in
$A+B$ and $A+Q B$
(We will assume from now that $R=A+B$ is constructed as before from a ring A and set of prime ideals \mathcal{P}.)

- $0 \in R$ is the element which is zero in every component; $1 \in R$ is the element which is 1 in every component (the image of $1 \in A$ in R).
- R is reduced.

Facts and details about $A+B$ rings

Properties in
$A+B$ Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $A+B$ and $A+Q B$ Rings
h-local in $A+B$ and $A+Q B$
(We will assume from now that $R=A+B$ is constructed as before from a ring A and set of prime ideals \mathcal{P}.)

- $0 \in R$ is the element which is zero in every component; $1 \in R$ is the element which is 1 in every component (the image of $1 \in A$ in R).
- R is reduced.
- $A \cap B=0$, so every element of R can be written uniquely as $a+b$ with $a \in A$ and $b \in B$.

Facts and details about $A+B$ rings

Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and A+QB Rings
h-local in
$A+B$ and $A+Q B$
(We will assume from now that $R=A+B$ is constructed as before from a ring A and set of prime ideals \mathcal{P}.)

- $0 \in R$ is the element which is zero in every component; $1 \in R$ is the element which is 1 in every component (the image of $1 \in A$ in R).
- R is reduced.
- $A \cap B=0$, so every element of R can be written uniquely as $a+b$ with $a \in A$ and $b \in B$.
- For $i \in \mathcal{I}$ and $r \in R$, let $r(i)$ denote the $i^{\text {th }}$-component of r in A / P_{i}.

Facts and details about $A+B$ rings

Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and A+QB Rings
h-local in $A+B$ and $A+Q B$
(We will assume from now that $R=A+B$ is constructed as before from a ring A and set of prime ideals \mathcal{P}.)

- $0 \in R$ is the element which is zero in every component; $1 \in R$ is the element which is 1 in every component (the image of $1 \in A$ in R).
- R is reduced.
- $A \cap B=0$, so every element of R can be written uniquely as $a+b$ with $a \in A$ and $b \in B$.
- For $i \in \mathcal{I}$ and $r \in R$, let $r(i)$ denote the $i^{\text {th }}$-component of r in A / P_{i}.
- For $i \in \mathcal{I}$, let $e_{i} \in R$ denote the idempotent which is 1 in the $i^{\text {th }}$-component and zero elsewhere. $e_{i} \in B$.

Facts and details about $A+B$ rings

Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and A+QB Rings
h-local in $A+B$ and $A+Q B$
(We will assume from now that $R=A+B$ is constructed as before from a ring A and set of prime ideals \mathcal{P}.)

- $0 \in R$ is the element which is zero in every component; $1 \in R$ is the element which is 1 in every component (the image of $1 \in A$ in R).
- R is reduced.
- $A \cap B=0$, so every element of R can be written uniquely as $a+b$ with $a \in A$ and $b \in B$.
- For $i \in \mathcal{I}$ and $r \in R$, let $r(i)$ denote the $i^{\text {th }}$-component of r in A / P_{i}.
- For $i \in \mathcal{I}$, let $e_{i} \in R$ denote the idempotent which is 1 in the $i^{\text {th }}$-component and zero elsewhere. $e_{i} \in B$.
- $e_{i} R \cong A / P_{i}$

$\operatorname{Spec}(A+B)$

Properties in A+B Rings

Alexandra
Epstein

$$
R=A+B
$$

Prime ideals of R which do not contain B

$\operatorname{Spec}(A+B)$

Properties in
A+B Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
A+QB Rings
h-local in
$A+B$ and $A+Q B$

$$
R=A+B
$$

Prime ideals of R which do not contain B
$i \in \mathcal{I}, M_{i}=\{r \in R \mid r(i)=0\}$ are precisely the minimal primes not containing B.

$\operatorname{Spec}(A+B)$

Properties in
A+B Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $A+B$ and A+QB Rings
h-local in $A+B$ and $A+Q B$
$R=A+B$
Prime ideals of R which do not contain B
$i \in \mathcal{I}, M_{i}=\{r \in R \mid r(i)=0\}$ are precisely the minimal primes not containing B. All other primes not containing B are of the form $Q+M_{i}$ where $Q \in \operatorname{Spec}(A)$ contains P_{i}.

$\operatorname{Spec}(A+B)$

Properties in
A+B Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $A+B$ and A+QB Rings
h-local in $A+B$ and $A+Q B$

$$
R=A+B
$$

Prime ideals of R which do not contain B
$i \in \mathcal{I}, M_{i}=\{r \in R \mid r(i)=0\}$ are precisely the minimal primes not containing B. All other primes not containing B are of the form $Q+M_{i}$ where $Q \in \operatorname{Spec}(A)$ contains P_{i}.

Note: No proper ideal of R can contain more than one of the M_{i} 's.

$\operatorname{Spec}(A+B)$

Properties in
A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $A+B$ and $A+Q B$ Rings
h-local in $A+B$ and $A+Q B$
$R=A+B$
Prime ideals of R which do not contain B
$i \in \mathcal{I}, M_{i}=\{r \in R \mid r(i)=0\}$ are precisely the minimal primes not containing B. All other primes not containing B are of the form $Q+M_{i}$ where $Q \in \operatorname{Spec}(A)$ contains P_{i}.

Note: No proper ideal of R can contain more than one of the M_{i} 's.

Prime ideals of R containing B

$\operatorname{Spec}(A+B)$

Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and A+QB Rings
h-local in $A+B$ and $A+Q B$
$R=A+B$
Prime ideals of R which do not contain B
$i \in \mathcal{I}, M_{i}=\{r \in R \mid r(i)=0\}$ are precisely the minimal primes not containing B. All other primes not containing B are of the form $Q+M_{i}$ where $Q \in \operatorname{Spec}(A)$ contains P_{i}.

Note: No proper ideal of R can contain more than one of the M_{i} 's.

Prime ideals of R containing B

Note $R / B \cong A$. So the prime ideals of R containing B are in one-to-one correspondence with the prime ideals of A.

$\operatorname{Spec}(A+B)$

Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and A+QB Rings
h-local in $A+B$ and $A+Q B$
$R=A+B$
Prime ideals of R which do not contain B
$i \in \mathcal{I}, M_{i}=\{r \in R \mid r(i)=0\}$ are precisely the minimal primes not containing B. All other primes not containing B are of the form $Q+M_{i}$ where $Q \in \operatorname{Spec}(A)$ contains P_{i}.

Note: No proper ideal of R can contain more than one of the M_{i} 's.

Prime ideals of R containing B

Note $R / B \cong A$. So the prime ideals of R containing B are in one-to-one correspondence with the prime ideals of A.

$$
P+B \text { with } P \in \operatorname{Spec}(A)
$$

$A+Q B$ Construction

Properties in A+B Rings

Alexandra
Epstein
Take A a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ as before.

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
$A+Q B$ Rings
h-local in
$A+B$ and
$A+Q B$

$A+Q B$ Construction

Properties in
A+B Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $A+B$ and $A+Q B$ Rings
h-local in
$A+B$ and $A+Q B$

Take A a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ as before.

$A+Q B$ Construction

Identify A with its image in $\prod_{i \in \mathcal{I}} Q\left(A / P_{i}\right)$

$A+Q B$ Construction

Properties in
A+B Rings
Alexandra
Epstein

Take A a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ as before.

$A+Q B$ Construction

Identify A with its image in $\prod_{i \in \mathcal{I}} Q\left(A / P_{i}\right)$ and let
$Q B=\sum_{i \in \mathcal{I}} Q\left(A / P_{i}\right)$.
h-local in
$A+B$ and $A+Q B$

$A+Q B$ Construction

Properties in

A+B Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $A+B$ and $A+Q B$ Rings
h-local in
$A+B$ and $A+Q B$

Take A a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ as before.

$A+Q B$ Construction

Identify A with its image in $\prod_{i \in \mathcal{I}} Q\left(A / P_{i}\right)$ and let
$Q B=\sum_{i \in \mathcal{I}} Q\left(A / P_{i}\right) . S=A+Q B$ is our desired ring, with
addition and multiplication defined coordinate-wise.

$A+Q B$ Construction

Properties in

$A+B$ Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $A+B$ and A+QB Rings
h-local in $A+B$ and $A+Q B$

Take A a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ as before.

$A+Q B$ Construction

Identify A with its image in $\prod_{i \in \mathcal{I}} Q\left(A / P_{i}\right)$ and let
$Q B=\sum_{i \in \mathcal{I}} Q\left(A / P_{i}\right) . S=A+Q B$ is our desired ring, with
addition and multiplication defined coordinate-wise.
Note that (with the same base ring A and set of primes \mathcal{P}) $A+B \subseteq A+Q B$; equality holds if and only if $\mathcal{P} \subseteq \operatorname{Max}(A)$.

Facts and details about $A+Q B$ rings

Properties in
A+B Rings

Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $A+B$ and A+QB Rings
h-local in
$A+B$ and $A+Q B$
(We will assume from now that $S=A+Q B$ is constructed as before from a ring A and set of prime ideals \mathcal{P}.)

Facts and details about $A+Q B$ rings

Properties in
$A+B$ Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
A+QB Rings
h-local in
$A+B$ and $A+Q B$
(We will assume from now that $S=A+Q B$ is constructed as before from a ring A and set of prime ideals \mathcal{P}.)

- $0 \in S$ is the element which is zero in every component; $1 \in S$ is the element which is 1 in every component (the image of $1 \in A$ in S).

Facts and details about $A+Q B$ rings

Properties in
$A+B$ Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and A+QB Rings
h-local in
$A+B$ and $A+Q B$
(We will assume from now that $S=A+Q B$ is constructed as before from a ring A and set of prime ideals \mathcal{P}.)

- $0 \in S$ is the element which is zero in every component; $1 \in S$ is the element which is 1 in every component (the image of $1 \in A$ in S).
- S is reduced.

Facts and details about $A+Q B$ rings

Properties in
$A+B$ Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
A+QB Rings
h-local in
$A+B$ and $A+Q B$
(We will assume from now that $S=A+Q B$ is constructed as before from a ring A and set of prime ideals \mathcal{P}.)

- $0 \in S$ is the element which is zero in every component; $1 \in S$ is the element which is 1 in every component (the image of $1 \in A$ in S).
- S is reduced.
- $A \cap Q B=0$, so every element of S can be written uniquely as $a+b$ with $a \in A$ and $b \in Q B$.

Facts and details about $A+Q B$ rings

Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and A+QB Rings
h-local in
$A+B$ and $A+Q B$
(We will assume from now that $S=A+Q B$ is constructed as before from a ring A and set of prime ideals \mathcal{P}.)

- $0 \in S$ is the element which is zero in every component; $1 \in S$ is the element which is 1 in every component (the image of $1 \in A$ in S).
- S is reduced.
- $A \cap Q B=0$, so every element of S can be written uniquely as $a+b$ with $a \in A$ and $b \in Q B$.
- For $i \in \mathcal{I}$ and $r \in S$, let $r(i)$ denote the $i^{\text {th }}$-component of r in $Q\left(A / P_{i}\right)$.

Facts and details about $A+Q B$ rings

Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and A+QB Rings
h-local in $A+B$ and $A+Q B$
(We will assume from now that $S=A+Q B$ is constructed as before from a ring A and set of prime ideals \mathcal{P}.)

- $0 \in S$ is the element which is zero in every component; $1 \in S$ is the element which is 1 in every component (the image of $1 \in A$ in S).
- S is reduced.
- $A \cap Q B=0$, so every element of S can be written uniquely as $a+b$ with $a \in A$ and $b \in Q B$.
- For $i \in \mathcal{I}$ and $r \in S$, let $r(i)$ denote the $i^{\text {th }}$-component of r in $Q\left(A / P_{i}\right)$.
- For $i \in \mathcal{I}$, let $e_{i} \in S$ denote the idempotent which is 1 in the $i^{\text {th }}$-component and zero elsewhere. $e_{i} \in Q B$.

Facts and details about $A+Q B$ rings

Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and A+QB Rings
h-local in $A+B$ and $A+Q B$
(We will assume from now that $S=A+Q B$ is constructed as before from a ring A and set of prime ideals \mathcal{P}.)

- $0 \in S$ is the element which is zero in every component; $1 \in S$ is the element which is 1 in every component (the image of $1 \in A$ in S).
- S is reduced.
- $A \cap Q B=0$, so every element of S can be written uniquely as $a+b$ with $a \in A$ and $b \in Q B$.
- For $i \in \mathcal{I}$ and $r \in S$, let $r(i)$ denote the $i^{\text {th }}$-component of r in $Q\left(A / P_{i}\right)$.
- For $i \in \mathcal{I}$, let $e_{i} \in S$ denote the idempotent which is 1 in the $i^{\text {th }}$-component and zero elsewhere. $e_{i} \in Q B$.
- $e_{i} S \cong Q\left(A / P_{i}\right)$

$\operatorname{Spec}(A+Q B)$

Properties in
A+B Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
$A+Q B$ Rings
h-local in
$A+B$ and $A+Q B$

$$
S=A+Q B
$$

Prime ideals of S which do not contain $Q B$

$\operatorname{Spec}(A+Q B)$

Properties in
A+B Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
A+QB Rings
h-local in
$A+B$ and $A+Q B$
$S=A+Q B$
Prime ideals of S which do not contain $Q B$
$i \in \mathcal{I}, M_{i}=\{r \in R \mid r(i)=0\}$ are precisely the minimal primes not containing $Q B$. These are also maximal ideals.

$\operatorname{Spec}(A+Q B)$

Properties in
A+B Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
A+QB Rings
h-local in
$A+B$ and
$A+Q B$
$S=A+Q B$
Prime ideals of S which do not contain QB
$i \in \mathcal{I}, M_{i}=\{r \in R \mid r(i)=0\}$ are precisely the minimal primes not containing $Q B$. These are also maximal ideals.

Prime ideals of S containing $Q B$

$\operatorname{Spec}(A+Q B)$

Properties in

$A+B$ Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
$A+Q B$ Rings
h-local in
$A+B$ and
$A+Q B$
$S=A+Q B$
Prime ideals of S which do not contain $Q B$
$i \in \mathcal{I}, M_{i}=\{r \in R \mid r(i)=0\}$ are precisely the minimal primes not containing $Q B$. These are also maximal ideals.

Prime ideals of S containing $Q B$

Note $S / Q B \cong A$. So the prime ideals of S containing $Q B$ are in one-to-one correspondence with the prime ideals of A.

$$
P+Q B \text { with } P \in \operatorname{Spec}(A)
$$

Special Elements in A, R, and S

Properties in
A+B Rings

Alexandra Epstein

$$
R=A+B, S=A+Q B
$$

- $r \in R($ or $S)$ is regular if and only if $r(i) \neq 0$ for all $i \in \mathcal{I}$.

Special Elements in A, R, and S

Properties in
A+B Rings

Alexandra Epstein

$$
R=A+B, S=A+Q B
$$

- $r \in R$ (or S) is regular if and only if $r(i) \neq 0$ for all $i \in \mathcal{I}$.
- $a \in A$ is called \mathcal{P}-regular if $a \notin \bigcup_{\alpha \in \mathcal{A}} P_{\alpha}$.

Special Elements in A, R, and S

Properties in
A+B Rings

Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $A+B$ and A+QB Rings
h-local in $A+B$ and $A+Q B$

$$
R=A+B, S=A+Q B
$$

- $r \in R$ (or S) is regular if and only if $r(i) \neq 0$ for all $i \in \mathcal{I}$.
- $a \in A$ is called \mathcal{P}-regular if a $\notin \bigcup_{\alpha \in \mathcal{A}} P_{\alpha}$. Note: \mathcal{P}-regular implies regular.

Special Elements in A, R, and S

Properties in
A+B Rings

Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $A+B$ and A+QB Rings
h-local in $A+B$ and $A+Q B$
$R=A+B, S=A+Q B$

- $r \in R$ (or S) is regular if and only if $r(i) \neq 0$ for all $i \in \mathcal{I}$.
- $a \in A$ is called \mathcal{P}-regular if $a \notin \bigcup_{\alpha \in \mathcal{A}} P_{\alpha}$. Note: \mathcal{P}-regular implies regular.

Lemma 1
Let $R=A+B$ and $S=A+Q B$.

Special Elements in A, R, and S

Properties in
A+B Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
A+QB Rings
h-local in $A+B$ and $A+Q B$
$R=A+B, S=A+Q B$

- $r \in R$ (or S) is regular if and only if $r(i) \neq 0$ for all $i \in \mathcal{I}$.
- $a \in A$ is called \mathcal{P}-regular if $a \notin \bigcup_{\alpha \in \mathcal{A}} P_{\alpha}$. Note: \mathcal{P}-regular implies regular.

Lemma 1
Let $R=A+B$ and $S=A+Q B$.
(1) If an element $a \in A$ is \mathcal{P}-regular, then $a \in R$ (resp. S) is a regular element of R (resp. S).

Special Elements in A, R, and S

Properties in
A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
A+QB Rings
h -local in $A+B$ and $A+Q B$
$R=A+B, S=A+Q B$

- $r \in R$ (or S) is regular if and only if $r(i) \neq 0$ for all $i \in \mathcal{I}$.
- $a \in A$ is called \mathcal{P}-regular if $a \notin \bigcup_{\alpha \in \mathcal{A}} P_{\alpha}$. Note: \mathcal{P}-regular implies regular.

Lemma 1
Let $R=A+B$ and $S=A+Q B$.
(1) If an element $a \in A$ is \mathcal{P}-regular, then $a \in R$ (resp. S) is a regular element of R (resp. S).

- If an ideal $I \subseteq A$ is \mathcal{P}-regular, then $I+B \in R$ (resp. S) is a regular ideal of R (resp. S).

Special Elements in A, R, and S

Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and A+QB Rings
h -local in $A+B$ and $A+Q B$
$R=A+B, S=A+Q B$

- $r \in R$ (or S) is regular if and only if $r(i) \neq 0$ for all $i \in \mathcal{I}$.
- $a \in A$ is called \mathcal{P}-regular if $a \notin \bigcup_{\alpha \in \mathcal{A}} P_{\alpha}$. Note: \mathcal{P}-regular implies regular.

Lemma 1

Let $R=A+B$ and $S=A+Q B$.
(1) If an element $a \in A$ is \mathcal{P}-regular, then $a \in R$ (resp. S) is a regular element of R (resp. S).

- If an ideal $I \subseteq A$ is \mathcal{P}-regular, then $I+B \in R$ (resp. S) is a regular ideal of R (resp. S).
(2) If $a+b \in R($ resp. $S)$ is a regular element with $a \in A$ and $b \in B$ (resp. $Q B$), then $a \in A$ is a \mathcal{P}-regular element.

Special Elements in A, R, and S

Properties in
A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and A+QB Rings
h -local in $A+B$ and $A+Q B$
$R=A+B, S=A+Q B$

- $r \in R$ (or S) is regular if and only if $r(i) \neq 0$ for all $i \in \mathcal{I}$.
- $a \in A$ is called \mathcal{P}-regular if $a \notin \bigcup_{\alpha \in \mathcal{A}} P_{\alpha}$. Note: \mathcal{P}-regular implies regular.

Lemma 1

Let $R=A+B$ and $S=A+Q B$.
(1) If an element $a \in A$ is \mathcal{P}-regular, then $a \in R$ (resp. S) is a regular element of R (resp. S).

- If an ideal $I \subseteq A$ is \mathcal{P}-regular, then $I+B \in R$ (resp. S) is a regular ideal of R (resp. S).
(2) If $a+b \in R$ (resp. S) is a regular element with $a \in A$ and $b \in B$ (resp. $Q B$), then $a \in A$ is a \mathcal{P}-regular element.
- If $I+B \subseteq R$ (resp. S) is a regular ideal with $I \subseteq A$, then $I \subseteq A$ is a \mathcal{P}-regular ideal.

"Types" of Theorems

$$
\begin{gathered}
\text { Properties in } \\
\mathrm{A}+\mathrm{B} \text { Rings }
\end{gathered} \quad R=A+B, S=A+Q B
$$

Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
A+B and
$A+Q B$ Rings
h-local in
$\mathrm{A}+\mathrm{B}$ and
$A+Q B$

"Types" of Theorems

Properties in
A+B Rings
Alexandra
Epstein
$R=A+B, S=A+Q B$
Let $[X]$ be some property of reduced rings from before.

"Types" of Theorems

Properties in
A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and $\mathrm{A}+\mathrm{QB}$ Rings
h-local in $A+B$ and $A+Q B$
$R=A+B, S=A+Q B$
Let $[X]$ be some property of reduced rings from before. (1) R has $[\mathrm{X}]$ if and only if S has $[\mathrm{X}]$ if and only if A has $[\mathrm{X}]$

"Types" of Theorems

Properties in
A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
$\mathrm{A}+\mathrm{QB}$ Rings
h-local in
$A+B$ and $A+Q B$
$R=A+B, S=A+Q B$
Let $[X]$ be some property of reduced rings from before.
(1) R has $[\mathrm{X}]$ if and only if S has $[\mathrm{X}]$ if and only if A has $[\mathrm{X}]$
(2) R or S has $[\mathrm{X}]$ if and only if (replace "regular" in definition $[\mathrm{X}]$ with " \mathcal{P}-regular" for $A /$ etc.)

"Types" of Theorems

Properties in
A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and A+QB Rings
h-local in $A+B$ and $A+Q B$
$R=A+B, S=A+Q B$
Let $[\mathrm{X}]$ be some property of reduced rings from before.
(1) R has $[\mathrm{X}]$ if and only if S has $[\mathrm{X}]$ if and only if A has $[\mathrm{X}]$
(2) R or S has $[\mathrm{X}]$ if and only if (replace "regular" in definition $[X]$ with " P-regular" for $A /$ etc.)
(3) R and S never have $[\mathrm{X}]$

"Types" of Theorems

Properties in
A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
$\mathrm{A}+\mathrm{QB}$ Rings
h-local in $A+B$ and $A+Q B$
$R=A+B, S=A+Q B$
Let $[X]$ be some property of reduced rings from before.
(1) R has $[\mathrm{X}]$ if and only if S has $[\mathrm{X}]$ if and only if A has $[\mathrm{X}]$
(2) R or S has $[\mathrm{X}]$ if and only if (replace "regular" in definition $[X]$ with " P-regular" for $A /$ etc.)
(3) R and S never have $[\mathrm{X}]$
(4) More requirements on A or \mathcal{P} than (2) are needed for R or S to have $[\mathrm{X}]$

"Types" of Theorems

Properties in
A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
$\mathrm{A}+\mathrm{QB}$ Rings
h-local in $A+B$ and $A+Q B$
$R=A+B, S=A+Q B$
Let $[X]$ be some property of reduced rings from before.
(1) R has $[\mathrm{X}]$ if and only if S has $[\mathrm{X}]$ if and only if A has $[\mathrm{X}]$
(2) R or S has $[\mathrm{X}]$ if and only if (replace "regular" in definition $[\mathrm{X}]$ with " P-regular" for $A /$ etc.)
(3) R and S never have $[\mathrm{X}]$
(4) More requirements on A or \mathcal{P} than (2) are needed for R or S to have $[\mathrm{X}]$

Examples

"Types" of Theorems

Properties in
A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
$\mathrm{A}+\mathrm{QB}$ Rings
h-local in $A+B$ and $A+Q B$
$R=A+B, S=A+Q B$
Let $[X]$ be some property of reduced rings from before.
(1) R has $[\mathrm{X}]$ if and only if S has $[\mathrm{X}]$ if and only if A has $[\mathrm{X}]$
(2) R or S has $[\mathrm{X}]$ if and only if (replace "regular" in definition $[\mathrm{X}]$ with " P-regular" for $A /$ etc.)
(3) R and S never have $[\mathrm{X}]$
(4) More requirements on A or \mathcal{P} than (2) are needed for R or S to have $[\mathrm{X}]$

Examples

Type $1 \longrightarrow$ von Neumann regular

"Types" of Theorems

Properties in
A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
$\mathrm{A}+\mathrm{QB}$ Rings
h-local in $A+B$ and $A+Q B$
$R=A+B, S=A+Q B$
Let $[\mathrm{X}]$ be some property of reduced rings from before.
(1) R has $[\mathrm{X}]$ if and only if S has $[\mathrm{X}]$ if and only if A has $[\mathrm{X}]$
(2) R or S has $[\mathrm{X}]$ if and only if (replace "regular" in definition $[\mathrm{X}]$ with " P-regular" for $A /$ etc.)
(3) R and S never have $[\mathrm{X}]$
(4) More requirements on A or \mathcal{P} than (2) are needed for R or S to have $[\mathrm{X}]$

Examples

Type $1 \longrightarrow$ von Neumann regular
Type $2 \longrightarrow$ Marot

"Types" of Theorems

Properties in
A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
A+QB Rings
h-local in $A+B$ and $A+Q B$
$R=A+B, S=A+Q B$
Let $[\mathrm{X}]$ be some property of reduced rings from before.
(1) R has $[\mathrm{X}]$ if and only if S has $[\mathrm{X}]$ if and only if A has $[\mathrm{X}]$
(2) R or S has $[\mathrm{X}]$ if and only if (replace "regular" in definition $[\mathrm{X}]$ with " P-regular" for $A /$ etc.)
(3) R and S never have $[\mathrm{X}]$
(4) More requirements on A or \mathcal{P} than (2) are needed for R or S to have $[\mathrm{X}]$

Examples

Type $1 \longrightarrow$ von Neumann regular
Type $2 \longrightarrow$ Marot
Type $3 \longrightarrow$ local

"Types" of Theorems

Properties in
A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
A+QB Rings
h-local in $A+B$ and $A+Q B$
$R=A+B, S=A+Q B$
Let $[X]$ be some property of reduced rings from before.
(1) R has $[\mathrm{X}]$ if and only if S has $[\mathrm{X}]$ if and only if A has $[\mathrm{X}]$
(2) R or S has $[\mathrm{X}]$ if and only if (replace "regular" in definition $[\mathrm{X}]$ with " P-regular" for $A /$ etc.)
(3) R and S never have $[\mathrm{X}]$
(4) More requirements on A or \mathcal{P} than (2) are needed for R or S to have $[\mathrm{X}]$

Examples

Type $1 \longrightarrow$ von Neumann regular
Type $2 \longrightarrow$ Marot
Type $3 \longrightarrow$ local
Type $4 \longrightarrow h$-local ${ }^{* *}$

Relationship of property between A, R, and S

Properties in
$A+B$ Rings
Alexandra
Epstein
Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
A+B and
$A+Q B$ Rings
h-local in
$A+B$ and $A+Q B$

$$
R=A+B, S=A+Q B,[\mathrm{X}] \text { some property }
$$

Relationship of property between A, R, and S

Properties in
A+B Rings
Alexandra
Epstein

Introduction

Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$\mathrm{A}+\mathrm{B}$ and $\mathrm{A}+\mathrm{QB}$ Rings
h-local in $\mathrm{A}+\mathrm{B}$ and $A+Q B$

$$
R=A+B, S=A+Q B,[\mathrm{X}] \text { some property }
$$

Relationship of property between A, R, and S

Properties in
A+B Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$\mathrm{A}+\mathrm{B}$ and
$\mathrm{A}+\mathrm{QB}$ Rings
h-local in $\mathrm{A}+\mathrm{B}$ and $A+Q B$
$R=A+B, S=A+Q B,[\mathrm{X}]$ some property
A has [X]

$$
R \text { has }[X] \text {-------------- } S \text { has }[X]
$$

A goal: determine which implications hold and which do not
h-local

Properties in A+B Rings

Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$\mathrm{A}+\mathrm{B}$ and
$A+Q B$ Rings
h-local in
$\mathrm{A}+\mathrm{B}$ and
$A+Q B$

A ring A is said to be h-local if

h-local

Properties in
$A+B$ Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$\mathrm{A}+\mathrm{QB}$
Construction
Properties in
$\mathrm{A}+\mathrm{B}$ and $A+Q B$ Rings
h-local in
$A+B$ and $A+Q B$

A ring A is said to be h-local if

- every regular element of A is contained in only finitely many maximal ideals (finite character)

h-local

Properties in
$A+B$ Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
$A+Q B$ Rings
h-local in
$A+B$ and
$A+Q B$

A ring A is said to be h-local if

- every regular element of A is contained in only finitely many maximal ideals (finite character)
- every regular prime ideal of A is contained in a unique maximal ideal.

Properties in
A+B Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
$A+Q B$ Rings
h-local in
$A+B$ and
$A+Q B$

A ring A is said to be h-local if

- every regular element of A is contained in only finitely many maximal ideals (finite character)
- every regular prime ideal of A is contained in a unique maximal ideal.

Theorem 1

Let $R=A+B . R$ is an h -local ring if and only if all of the following hold:

Properties in
A+B Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and

A ring A is said to be h-local if

- every regular element of A is contained in only finitely many maximal ideals (finite character)
- every regular prime ideal of A is contained in a unique maximal ideal.

Theorem 1

Let $R=A+B . R$ is an h -local ring if and only if all of the following hold:
(1) Every \mathcal{P}-regular element of A has finite character in A.

Properties in
A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and

A ring A is said to be h-local if

- every regular element of A is contained in only finitely many maximal ideals (finite character)
- every regular prime ideal of A is contained in a unique maximal ideal.

Theorem 1

Let $R=A+B . R$ is an h -local ring if and only if all of the following hold:
(1) Every \mathcal{P}-regular element of A has finite character in A.
(2) Every \mathcal{P}-regular prime ideal of A is contained in a unique maximal ideal of A.

h-local

Properties in
A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and

A ring A is said to be h-local if

- every regular element of A is contained in only finitely many maximal ideals (finite character)
- every regular prime ideal of A is contained in a unique maximal ideal.

Theorem 1

Let $R=A+B . R$ is an h -local ring if and only if all of the following hold:
(1) Every \mathcal{P}-regular element of A has finite character in A.
(2) Every \mathcal{P}-regular prime ideal of A is contained in a unique maximal ideal of A.
(3) For every \mathcal{P}-regular prime ideal $P \in \operatorname{Spec}(A), P_{\alpha} \nsubseteq P$ for all $P_{\alpha} \in \mathcal{P}$.

h-local

Properties in
A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and

A ring A is said to be h-local if

- every regular element of A is contained in only finitely many maximal ideals (finite character)
- every regular prime ideal of A is contained in a unique maximal ideal.

Theorem 1

Let $R=A+B . R$ is an h -local ring if and only if all of the following hold:
(1) Every \mathcal{P}-regular element of A has finite character in A.
(2) Every \mathcal{P}-regular prime ideal of A is contained in a unique maximal ideal of A.
(3) For every \mathcal{P}-regular prime ideal $P \in \operatorname{Spec}(A), P_{\alpha} \nsubseteq P$ for all $P_{\alpha} \in \mathcal{P}$.
(4) A / P_{α} is h-local for all $P_{\alpha} \in \mathcal{P}$.

Properties in A+B Rings

Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$\mathrm{A}+\mathrm{QB}$
Construction
Properties in
$\mathrm{A}+\mathrm{B}$ and $A+Q B$ Rings
h-local in
$\mathrm{A}+\mathrm{B}$ and
$A+Q B$

Theorem 2
Let $S=A+Q B$.

Properties in
A+B Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
$A+Q B$ Rings
h-local in
$A+B$ and
$\mathrm{A}+\mathrm{QB}$

Theorem 2

Let $S=A+Q B . S$ is h-local if and only if each \mathcal{P}-regular element of A has finite character and each \mathcal{P}-regular prime ideal of A is contained in a unique maximal ideal of A.

Note that this is just (1) and (2) from Theorem 1.

Properties in

A+B Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and

Theorem 2

Let $S=A+Q B . S$ is h-local if and only if each \mathcal{P}-regular element of A has finite character and each \mathcal{P}-regular prime ideal of A is contained in a unique maximal ideal of A.

Note that this is just (1) and (2) from Theorem 1.
$M_{i} \in \operatorname{Max}(A+Q B) \longrightarrow$ exclude (3)
$(A+Q B) e_{i} \cong Q\left(A / P_{i}\right)$ a field (so h-local) \longrightarrow exclude (4)

Proof of Theorem 1

Properties in A+B Rings

Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
$A+Q B$ Rings
h-local in
$A+B$ and
$A+Q B$
\Rightarrow (contrapositive)

Proof of Theorem 1

Properties in
A+B Rings
Alexandra
Epstein
Introduction
Definitions
A+B and
A+QB
Construction
Properties in
A+B and
A+QB Rings
h-local in
A+B and
A+QB

Proof of Theorem 1

Properties in
$A+B$ Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $\mathrm{A}+\mathrm{B}$ and $A+Q B$ Rings
h-local in
$A+B$ and $A+Q B$
\Rightarrow (contrapositive)
(1) or (2) fails: As the prime ideals of A correspond to the prime ideals of R containing B, it follows R is not h-local.

Proof of Theorem 1

Properties in
$A+B$ Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $A+B$ and $A+Q B$ Rings
h-local in
$A+B$ and $A+Q B$
\Rightarrow (contrapositive)
(1) or (2) fails: As the prime ideals of A correspond to the prime ideals of R containing B, it follows R is not h-local.
(3) fails:

Proof of Theorem 1

Properties in
A+B Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
$A+Q B$ Rings
h-local in
$A+B$ and
$A+Q B$
\Rightarrow (contrapositive)
(1) or (2) fails: As the prime ideals of A correspond to the prime ideals of R containing B, it follows R is not h-local.
(3) fails: There exists $Q \subseteq \operatorname{Spec}(A) \mathcal{P}$-regular properly containing some $P_{\alpha} \in \mathcal{P}$.

Proof of Theorem 1

Properties in
 $A+B$ Rings
 Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $A+B$ and A+QB Rings
h-local in
$A+B$ and
$\mathrm{A}+\mathrm{QB}$
\Rightarrow (contrapositive)
(1) or (2) fails: As the prime ideals of A correspond to the prime ideals of R containing B, it follows R is not h -local.
(3) fails: There exists $Q \subseteq \operatorname{Spec}(A) \mathcal{P}$-regular properly containing some $P_{\alpha} \in \mathcal{P}$. Note $Q \subseteq N \in \operatorname{Max}(A)$. For $a \in Q$ \mathcal{P}-regular, $a \in R$ regular contained in $N+M_{i}$ with $i=(\alpha, n) \in \mathcal{I}$ for all $n \in \mathbb{N} ; R$ is not h-local.

Proof of Theorem 1

Properties in

A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
\Rightarrow (contrapositive)
(1) or (2) fails: As the prime ideals of A correspond to the prime ideals of R containing B, it follows R is not h -local.
(3) fails: There exists $Q \subseteq \operatorname{Spec}(A) \mathcal{P}$-regular properly containing some $P_{\alpha} \in \mathcal{P}$. Note $Q \subseteq N \in \operatorname{Max}(A)$. For $a \in Q$ \mathcal{P}-regular, $a \in R$ regular contained in $N+M_{i}$ with $i=(\alpha, n) \in \mathcal{I}$ for all $n \in \mathbb{N} ; R$ is not h -local.
(4) fails:

Proof of Theorem 1

Properties in

A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
\Rightarrow (contrapositive)
(1) or (2) fails: As the prime ideals of A correspond to the prime ideals of R containing B, it follows R is not h -local.
(3) fails: There exists $Q \subseteq \operatorname{Spec}(A) \mathcal{P}$-regular properly containing some $P_{\alpha} \in \mathcal{P}$. Note $Q \subseteq N \in \operatorname{Max}(A)$. For $a \in Q$ \mathcal{P}-regular, $a \in R$ regular contained in $N+M_{i}$ with $i=(\alpha, n) \in \mathcal{I}$ for all $n \in \mathbb{N} ; R$ is not h-local.
(4) fails: If, for some $P_{\alpha} \in \mathcal{P}, a+P_{\alpha} \in A / P_{\alpha}$ nonzero and contained in $N_{k} / P_{\alpha} \in \operatorname{Max}\left(A / P_{\alpha}\right), k \in K(K$ infinite $)$,

Proof of Theorem 1

Alexandra Epstein

Introduction
Definitions
$A+B$ and
\Rightarrow (contrapositive)
(1) or (2) fails: As the prime ideals of A correspond to the prime ideals of R containing B, it follows R is not h -local.
(3) fails: There exists $Q \subseteq \operatorname{Spec}(A) \mathcal{P}$-regular properly containing some $P_{\alpha} \in \mathcal{P}$. Note $Q \subseteq N \in \operatorname{Max}(A)$. For $a \in Q$ \mathcal{P}-regular, $a \in R$ regular contained in $N+M_{i}$ with $i=(\alpha, n) \in \mathcal{I}$ for all $n \in \mathbb{N} ; R$ is not h-local.
(4) fails: If, for some $P_{\alpha} \in \mathcal{P}, a+P_{\alpha} \in A / P_{\alpha}$ nonzero and contained in $N_{k} / P_{\alpha} \in \operatorname{Max}\left(A / P_{\alpha}\right), k \in K(K$ infinite $)$, then for $i=(\alpha, 1) \in \mathcal{I}, 1+e_{i}(a-1) \in R$ is regular and contained in $N_{k}+M_{i} \in \operatorname{Max}(R), \forall k \in K$; so R is not h-local.

Proof of Theorem 1

Alexandra Epstein

Introduction
Definitions
$A+B$ and
\Rightarrow (contrapositive)
(1) or (2) fails: As the prime ideals of A correspond to the prime ideals of R containing B, it follows R is not h -local.
(3) fails: There exists $Q \subseteq \operatorname{Spec}(A) \mathcal{P}$-regular properly containing some $P_{\alpha} \in \mathcal{P}$. Note $Q \subseteq N \in \operatorname{Max}(A)$. For $a \in Q$ \mathcal{P}-regular, $a \in R$ regular contained in $N+M_{i}$ with $i=(\alpha, n) \in \mathcal{I}$ for all $n \in \mathbb{N} ; R$ is not h-local.
(4) fails: If, for some $P_{\alpha} \in \mathcal{P}, a+P_{\alpha} \in A / P_{\alpha}$ nonzero and contained in $N_{k} / P_{\alpha} \in \operatorname{Max}\left(A / P_{\alpha}\right), k \in K$ (K infinite), then for $i=(\alpha, 1) \in \mathcal{I}, 1+e_{i}(a-1) \in R$ is regular and contained in $N_{k}+M_{i} \in \operatorname{Max}(R), \forall k \in K$; so R is not h-local. (Similar argument if $Q / P_{\alpha} \in \operatorname{Spec}\left(A / P_{\alpha}\right)$ is a nonzero contained in more than one maximal ideal of A / P_{α}.)

Proof of Theorem 1 (cont.)

Properties in A+B Rings

Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$\mathrm{A}+\mathrm{QB}$
Construction
Properties in
$\mathrm{A}+\mathrm{B}$ and
$A+Q B$ Rings
h-local in
$\mathrm{A}+\mathrm{B}$ and
$\mathrm{A}+\mathrm{QB}$

Proof of Theorem 1 (cont.)

Properties in A+B Rings

Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and $A+Q B$ Rings
h-local in
$A+B$ and $A+Q B$
\Leftarrow
If $a+b \in R$ regular then (1) implies $a+b$ contained in only finitely many maximal ideals of R containing B.

Proof of Theorem 1 (cont.)

Properties in
A+B Rings
Alexandra
Epstein

Introduction
Definitions
A+B and
A+QB
Construction
Properties in
A+B and
A+QB Rings
h-local in
A+B and
A+QB
\Leftarrow
If $a+b \in R$ regular then (1) implies $a+b$ contained in only finitely many maximal ideals of R containing B. 3 guarantees that $a \in R$ is not contained in any maximal ideals of R which do not contain B.

Proof of Theorem 1 (cont.)

Properties in
A+B Rings
Alexandra
Epstein
Introduction
Definitions
A+B and
A+QB
Construction
Properties in
A+B and
A+QB Rings
h-local in
A+B and
A+QB

Proof of Theorem 1 (cont.)

Properties in
A+B Rings
Alexandra
Epstein
Introduction
Definitions
A+B and
A+QB
Construction
Properties in
A+B and
A+QB Rings
h-local in
A+B and
A+QB

Proof of Theorem 1 (cont.)

Properties in

A+B Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
\Leftarrow
If $a+b \in R$ regular then (1) implies $a+b$ contained in only finitely many maximal ideals of R containing B. (3) guarantees that $a \in R$ is not contained in any maximal ideals of R which do not contain B. (4) implies that $a+b$ is contained in finitely many maximal ideals containing M_{i} for each $i \in \mathcal{I}$ such that $b(i) \neq 0$.
(2) implies that if $Q+B \in \operatorname{Spec}(R)$ is regular, then it is contained in a unique maximal ideal of R, which has the form $N+B$ with $Q \subseteq N \in \operatorname{Max}(A)$.

Proof of Theorem 1 (cont.)

Properties in

$A+B$ Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
\Leftarrow
If $a+b \in R$ regular then (1) implies $a+b$ contained in only finitely many maximal ideals of R containing B. (3) guarantees that $a \in R$ is not contained in any maximal ideals of R which do not contain B. (4) implies that $a+b$ is contained in finitely many maximal ideals containing M_{i} for each $i \in \mathcal{I}$ such that $b(i) \neq 0$.
(2) implies that if $Q+B \in \operatorname{Spec}(R)$ is regular, then it is contained in a unique maximal ideal of R, which has the form $N+B$ with $Q \subseteq N \in \operatorname{Max}(A)$.
(4) implies that if $Q+M_{i} \in \operatorname{Spec}(R)$ is regular

Proof of Theorem 1 (cont.)

Alexandra Epstein

Definitions
$A+B$ and
\Leftarrow
If $a+b \in R$ regular then (1) implies $a+b$ contained in only finitely many maximal ideals of R containing B. (3) guarantees that $a \in R$ is not contained in any maximal ideals of R which do not contain B. (4) implies that $a+b$ is contained in finitely many maximal ideals containing M_{i} for each $i \in \mathcal{I}$ such that $b(i) \neq 0$.
(2) implies that if $Q+B \in \operatorname{Spec}(R)$ is regular, then it is contained in a unique maximal ideal of R, which has the form $N+B$ with $Q \subseteq N \in \operatorname{Max}(A)$.
(4) implies that if $Q+M_{i} \in \operatorname{Spec}(R)$ is regular for some $i \in \mathcal{I}$, then it is contained in a unique maximal ideal of R, which has the form $N+M_{i}$ with $Q / P_{i} \subseteq N / P_{i} \in \operatorname{Max}\left(A / P_{i}\right)$.

Independence of conditions

Properties in
$A+B$ Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and $A+Q B$ Rings
h-local in $A+B$ and $A+Q B$
(1) Every \mathcal{P}-regular element of A has finite character in A.
(2) Every \mathcal{P}-regular prime ideal of A is contained in a unique maximal ideal of A.
(3) For every \mathcal{P}-regular prime ideal $P \in \operatorname{Spec}(A), P_{\alpha} \nsubseteq P$ for all $P_{\alpha} \in \mathcal{P}$.
(4) A / P_{α} is h-local for all $P_{\alpha} \in \mathcal{P}$.

Independence of conditions

Alexandra Epstein
(1) Every \mathcal{P}-regular element of A has finite character in A.
(2) Every \mathcal{P}-regular prime ideal of A is contained in a unique maximal ideal of A.
(3) For every \mathcal{P}-regular prime ideal $P \in \operatorname{Spec}(A), P_{\alpha} \nsubseteq P$ for all $P_{\alpha} \in \mathcal{P}$.
(4) A / P_{α} is h-local for all $P_{\alpha} \in \mathcal{P}$.

We give examples to show that these conditions are independent of each other, and thus all are required for Theorem 1.
For each example, we give a ring A and set of primes $\mathcal{P} \subseteq \operatorname{Spec}(A)$ which will satisfy the stated conditions.

Independence of conditions

Properties in
A+B Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $A+B$ and $A+Q B$ Rings
h-local in
$A+B$ and
$A+Q B$
(1) Every \mathcal{P}-regular element of A has finite character in A.
(2) Every \mathcal{P}-regular prime ideal of A is contained in a unique maximal ideal of A.
(3) For every \mathcal{P}-regular prime ideal $P \in \operatorname{Spec}(A), P_{\alpha} \nsubseteq P$ for all $P_{\alpha} \in \mathcal{P}$.
(4) A / P_{α} is h-local for all $P_{\alpha} \in \mathcal{P}$.

Example 1: only (1) fails

Independence of conditions

Properties in

A+B Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
(1) Every \mathcal{P}-regular element of A has finite character in A.
(2) Every \mathcal{P}-regular prime ideal of A is contained in a unique maximal ideal of A.
(3) For every \mathcal{P}-regular prime ideal $P \in \operatorname{Spec}(A), P_{\alpha} \nsubseteq P$ for all $P_{\alpha} \in \mathcal{P}$.
(4) A / P_{α} is h-local for all $P_{\alpha} \in \mathcal{P}$.

Example 1: only (1) fails

Let $\beta \mathbb{N}$ be the Stone-Čech compactification of \mathbb{N} and take $A=C(\beta \mathbb{N})$.

Independence of conditions

Properties in

A+B Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
(1) Every \mathcal{P}-regular element of A has finite character in A.
(2) Every \mathcal{P}-regular prime ideal of A is contained in a unique maximal ideal of A.
(3) For every \mathcal{P}-regular prime ideal $P \in \operatorname{Spec}(A), P_{\alpha} \nsubseteq P$ for all $P_{\alpha} \in \mathcal{P}$.
(4) A / P_{α} is h-local for all $P_{\alpha} \in \mathcal{P}$.

Example 1: only (1) fails

Let $\beta \mathbb{N}$ be the Stone-Čech compactification of \mathbb{N} and take $A=C(\beta \mathbb{N})$. For each $p \in \beta \mathbb{N}$,

$$
M_{p}=\{f \in C(\beta \mathbb{N}) \mid f(p)=0\} \in \operatorname{Max}(A)
$$

Independence of conditions

Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $A+B$ and $A+Q B$ Rings
h-local in
$A+B$ and
$A+Q B$
(1) Every \mathcal{P}-regular element of A has finite character in A.
(2) Every \mathcal{P}-regular prime ideal of A is contained in a unique maximal ideal of A.
(3) For every \mathcal{P}-regular prime ideal $P \in \operatorname{Spec}(A), P_{\alpha} \nsubseteq P$ for all $P_{\alpha} \in \mathcal{P}$.
(4) A / P_{α} is h-local for all $P_{\alpha} \in \mathcal{P}$.

Example 1: only (1) fails

Let $\beta \mathbb{N}$ be the Stone-Čech compactification of \mathbb{N} and take $A=C(\beta \mathbb{N})$. For each $p \in \beta \mathbb{N}$, $M_{p}=\{f \in C(\beta \mathbb{N}) \mid f(p)=0\} \in \operatorname{Max}(A)$. Take $\mathcal{P}=\left\{M_{p} \in \operatorname{Max}(A) \mid p \in \mathbb{N}\right\}$.

Independence of conditions

Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $A+B$ and $A+Q B$ Rings
h-local in
$A+B$ and
$A+Q B$
(1) Every \mathcal{P}-regular element of A has finite character in A.
(2) Every \mathcal{P}-regular prime ideal of A is contained in a unique maximal ideal of A.
(3) For every \mathcal{P}-regular prime ideal $P \in \operatorname{Spec}(A), P_{\alpha} \nsubseteq P$ for all $P_{\alpha} \in \mathcal{P}$.
(4) A / P_{α} is h-local for all $P_{\alpha} \in \mathcal{P}$.

Example 1: only (1) fails

Let $\beta \mathbb{N}$ be the Stone-Čech compactification of \mathbb{N} and take $A=C(\beta \mathbb{N})$. For each $p \in \beta \mathbb{N}$, $M_{p}=\{f \in C(\beta \mathbb{N}) \mid f(p)=0\} \in \operatorname{Max}(A)$. Take $\mathcal{P}=\left\{M_{p} \in \operatorname{Max}(A) \mid p \in \mathbb{N}\right\}$.

Independence of conditions

Properties in
A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $A+B$ and $A+Q B$ Rings
h-local in
$A+B$ and
$A+Q B$
(1) Every \mathcal{P}-regular element of A has finite character in A.
(2) Every \mathcal{P}-regular prime ideal of A is contained in a unique maximal ideal of A.
(3) For every \mathcal{P}-regular prime ideal $P \in \operatorname{Spec}(A), P_{\alpha} \nsubseteq P$ for all $P_{\alpha} \in \mathcal{P}$.
(4) A / P_{α} is h-local for all $P_{\alpha} \in \mathcal{P}$.

Example 2: only (2) fails

Independence of conditions

Properties in
$A+B$ Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and $A+Q B$ Rings
h-local in
$A+B$ and
$A+Q B$
(1) Every \mathcal{P}-regular element of A has finite character in A.
(2) Every \mathcal{P}-regular prime ideal of A is contained in a unique maximal ideal of A.
(3) For every \mathcal{P}-regular prime ideal $P \in \operatorname{Spec}(A), P_{\alpha} \nsubseteq P$ for all $P_{\alpha} \in \mathcal{P}$.
(4) A / P_{α} is h-local for all $P_{\alpha} \in \mathcal{P}$.

Example 2: only (2) fails

Let $D=T^{-1} K[X, Y]$ where $T=K[X, Y] \backslash((X, Y) \cup(X, Y-1))$.

Independence of conditions

Properties in
A+B Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $A+B$ and $A+Q B$ Rings
h-local in
$A+B$ and
$A+Q B$
(1) Every \mathcal{P}-regular element of A has finite character in A.
(2) Every \mathcal{P}-regular prime ideal of A is contained in a unique maximal ideal of A.
(3) For every \mathcal{P}-regular prime ideal $P \in \operatorname{Spec}(A), P_{\alpha} \nsubseteq P$ for all $P_{\alpha} \in \mathcal{P}$.
(4) A / P_{α} is h-local for all $P_{\alpha} \in \mathcal{P}$.

Example 2: only (2) fails

Let $D=T^{-1} K[X, Y]$ where
$T=K[X, Y] \backslash((X, Y) \cup(X, Y-1))$. Take $A=A^{\prime}+Q B^{\prime}$ where $A^{\prime}=D \times D$ and $\mathcal{P}^{\prime}=\{D \times(0),(0) \times D\}$.

Independence of conditions

Properties in
A+B Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $A+B$ and $A+Q B$ Rings
h-local in
$A+B$ and
$A+Q B$
(1) Every \mathcal{P}-regular element of A has finite character in A.
(2) Every \mathcal{P}-regular prime ideal of A is contained in a unique maximal ideal of A.
(3) For every \mathcal{P}-regular prime ideal $P \in \operatorname{Spec}(A), P_{\alpha} \nsubseteq P$ for all $P_{\alpha} \in \mathcal{P}$.
(4) A / P_{α} is h-local for all $P_{\alpha} \in \mathcal{P}$.

Example 2: only (2) fails

Let $D=T^{-1} K[X, Y]$ where
$T=K[X, Y] \backslash((X, Y) \cup(X, Y-1))$. Take $A=A^{\prime}+Q B^{\prime}$ where $A^{\prime}=D \times D$ and $\mathcal{P}^{\prime}=\{D \times(0),(0) \times D\}$. Then take $\mathcal{P}=\left\{M_{i}^{\prime} \mid i \in \mathcal{I}^{\prime}\right\}$.

Independence of conditions

Properties in
A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $A+B$ and $A+Q B$ Rings
h-local in
$A+B$ and
$A+Q B$
(1) Every \mathcal{P}-regular element of A has finite character in A.
(2) Every \mathcal{P}-regular prime ideal of A is contained in a unique maximal ideal of A.
(3) For every \mathcal{P}-regular prime ideal $P \in \operatorname{Spec}(A), P_{\alpha} \nsubseteq P$ for all $P_{\alpha} \in \mathcal{P}$.
(4) A / P_{α} is h-local for all $P_{\alpha} \in \mathcal{P}$.

Example 3: only (3) fails

Independence of conditions

Properties in

A+B Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $A+B$ and $A+Q B$ Rings
h -local in
$A+B$ and
$A+Q B$
(1) Every \mathcal{P}-regular element of A has finite character in A.
(2) Every \mathcal{P}-regular prime ideal of A is contained in a unique maximal ideal of A.
(3) For every \mathcal{P}-regular prime ideal $P \in \operatorname{Spec}(A), P_{\alpha} \nsubseteq P$ for all $P_{\alpha} \in \mathcal{P}$.
(4) A / P_{α} is h-local for all $P_{\alpha} \in \mathcal{P}$.

Example 3: only (3) fails

Let $A=K[X, Y]_{(X, Y)}$, the localization of $K[X, Y]$ at the maximal ideal (X, Y)

Independence of conditions

Properties in

A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $A+B$ and $A+Q B$ Rings
h-local in
$A+B$ and
$A+Q B$
(1) Every \mathcal{P}-regular element of A has finite character in A.
(2) Every \mathcal{P}-regular prime ideal of A is contained in a unique maximal ideal of A.
(3) For every \mathcal{P}-regular prime ideal $P \in \operatorname{Spec}(A), P_{\alpha} \nsubseteq P$ for all $P_{\alpha} \in \mathcal{P}$.
(4) A / P_{α} is h-local for all $P_{\alpha} \in \mathcal{P}$.

Example 3: only (3) fails

Let $A=K[X, Y]_{(X, Y)}$, the localization of $K[X, Y]$ at the maximal ideal (X, Y) and $\mathcal{P}=\{$ nonzero principal prime ideals of $A\} \backslash(X) A$.

Independence of conditions

Properties in

A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $A+B$ and $A+Q B$ Rings
h-local in
$A+B$ and
$A+Q B$
(1) Every \mathcal{P}-regular element of A has finite character in A.
(2) Every \mathcal{P}-regular prime ideal of A is contained in a unique maximal ideal of A.
(3) For every \mathcal{P}-regular prime ideal $P \in \operatorname{Spec}(A), P_{\alpha} \nsubseteq P$ for all $P_{\alpha} \in \mathcal{P}$.
(4) A / P_{α} is h-local for all $P_{\alpha} \in \mathcal{P}$.

Example 3: only (3) fails

Let $A=K[X, Y]_{(X, Y)}$, the localization of $K[X, Y]$ at the maximal ideal (X, Y) and $\mathcal{P}=\{$ nonzero principal prime ideals of $A\} \backslash(X) A$.

Independence of conditions

Properties in
A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and $A+Q B$ Rings
h-local in
$A+B$ and
$A+Q B$
(1) Every \mathcal{P}-regular element of A has finite character in A.
(2) Every \mathcal{P}-regular prime ideal of A is contained in a unique maximal ideal of A.
(3) For every \mathcal{P}-regular prime ideal $P \in \operatorname{Spec}(A), P_{\alpha} \nsubseteq P$ for all $P_{\alpha} \in \mathcal{P}$.
(4) A / P_{α} is h-local for all $P_{\alpha} \in \mathcal{P}$.

Example 4: only (4) fails

Independence of conditions

Properties in
A+B Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
$A+Q B$ Rings
h-local in
$A+B$ and
$A+Q B$
(1) Every \mathcal{P}-regular element of A has finite character in A.
(2) Every \mathcal{P}-regular prime ideal of A is contained in a unique maximal ideal of A.
(3) For every \mathcal{P}-regular prime ideal $P \in \operatorname{Spec}(A), P_{\alpha} \nsubseteq P$ for all $P_{\alpha} \in \mathcal{P}$.
(4) A / P_{α} is h-local for all $P_{\alpha} \in \mathcal{P}$.

Example 4: only (4) fails

Let $A=K[X, Y, Z]$ and
$\mathcal{P}=\{$ nonzero principal prime ideals of $A\}$.

h-local between A, R, and S

Properties in
A+B Rings
Alexandra
Epstein

$$
R=A+B, S=A+Q B
$$

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $\mathrm{A}+\mathrm{B}$ and $A+Q B$ Rings
h-local in $A+B$ and $A+Q B$

h-local between A, R, and S

Properties in
A+B Rings

Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in $\mathrm{A}+\mathrm{B}$ and $A+Q B$ Rings
h-local in $\mathrm{A}+\mathrm{B}$ and $A+Q B$

$$
R=A+B, S=A+Q B
$$

h-local between A, R, and S

Properties in
A+B Rings

Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in A+B and $A+Q B$ Rings
h-local in $\mathrm{A}+\mathrm{B}$ and $A+Q B$

$$
R=A+B, S=A+Q B
$$

Properties in
A+B Rings
Alexandra
Epstein

Introduction
Definitions
$A+B$ and
$A+Q B$
Construction
Properties in
$A+B$ and
$A+Q B$ Rings
h-local in
$A+B$ and
$A+Q B$

Thank you for listening!

References

Properties in

A+B Rings
Alexandra Epstein

Introduction
Definitions
$A+B$ and

- A.R. Aliabad and R. Mohamadian. On sz ${ }^{\circ}$-ideals in polynomial rings. Communications in Algebra, 39:701-717, 2011.
- M. Griffin. Valuations and prufer rings. Canadian Journal of Mathematics, 26(2):412-429, 1974.
- J. Huckaba. Commutative Rings with Zero Divisors. Chapman \& Hall Pure and Applied Mathematics. Taylor \& Francis, 1988.
- T. Lucas. Weakly additively regular rings and special families of prime ideals. Palestine Journal of Mathematics, 7(1):14-31, 2018.
- T. Lucas. Strongly Additively Regular Rings and Graphs, pages 113-134 .Birkhauser Singapore, 042019.
- A. Omairi. H-Local Rings. PhD thesis, Florida Atlantic University, 2019
- S. Safaeeyan and A. Taherifar. d-ideals, fd-ideals and prime ideals. Quaestiones Mathematicae. 42(6):717-732, 2019. Taylor \& Francis.

