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@ Annihilators in commutative rings

o Annihilator conditions
o Ideals closed under taking double annihilators of
elements/finite subsets

o A+ B rings used as examples

o Various authors investigated properties of A 4 B rings, as
well as various related constructions (sometimes still using
the name ‘A+ B ring’).

o Focus: look at a variety of properties and determine when
A + B satisfies each.
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R is a reduced ring if 0 is the only nilpotent element (x” =0
implies x = 0). An element of R is called regular if it is not a
zero divisor, and an ideal of R is called regular if it contains a
regular element.

Definitions

We say | C R is a minimal prime ideal if it is minimal (under
inclusion) with respect to being a prime ideal. We denote the
set of all prime ideals of R by Spec(R).

We let Q(R) denote the total quotient ring of R (invert all
non-zero divisors).
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Let A be a ring and P C Spec(A) with index set A such that
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Constructing New Rings

Let A be a ring and P C Spec(A) with index set A such that

() Pa=0. Take ZT=AxNand for i = (a,m) € Z, P; = P,.

acA

A + B Construction

Identify A with its image in HA/P,- and let B = ZA/P,-.
iz i€T

R = A+ B is our desired ring, with addition and multiplication

defined coordinate-wise.

Take a€ Aand b€ B. So a+ b looks like:
(...a+P,-l,xl+P(a71),a+P(ayz),xz—i—P(a"q,),...,a—i—P,-2...)

Note we are only changing a € R in finitely many components,
based on the finitely many nonzero components of b.
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Prime ideals of R which do not contain B

i€Z, Mi={re R|r(i)=0} are precisely the minimal primes
not containing B. All other primes not containing B are of the
form Q + M; where Q € Spec(A) contains P;.

Note: No proper ideal of R can contain more than one of the
M,"S.
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Note R/B = A. So the prime ideals of R containing B are in
one-to-one correspondence with the prime ideals of A.

P + B with P € Spec(A)
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A + @B Construction

Take A a ring and P C Spec(A) as before.
A+ QB Construction
Identify A with its image in H Q(A/P;) and let
i€
QB = Z Q(A/P;). S = A+ @B is our desired ring, with

i€
addition and multiplication defined coordinate-wise.

Note that (with the same base ring A and set of primes P)
A+ B C A+ @B; equality holds if and only if P C Max(A).
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Facts and details about A + @B rings

(We will assume from now that S = A+ QB is constructed as
before from a ring A and set of prime ideals P.)

o 0 € S is the element which is zero in every component;
1 € S is the element which is 1 in every component (the
image of 1€ Aiin S).

o S is reduced.

o AN Q@B =0, so every element of S can be written
uniquely as a+ b with a € Aand b € @B.

o Fori€Zand r €S, let r(i) denote the i*"-component of
rin Q(A/P;).

o ForieZ, let ¢ € S denote the idempotent which is 1 in
the it"-component and zero elsewhere. e; € QB.

0 ¢S Q(A/P,')
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S=A+@B

Prime ideals of S which do not contain QB

i€Z, Mi={reR|r(i)=0} are precisely the minimal primes
not containing QB. These are also maximal ideals.

v

Prime ideals of S containing QB

Note S/QB = A. So the prime ideals of S containing @B are
in one-to-one correspondence with the prime ideals of A.

P + QB with P € Spec(A)
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regular element of R (resp. S).
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b € B (resp. @B), then a € A is a P-regular element.
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Special Elements in A, R, and S

R=A+B,S=A+QB
o r€ R (or S) is regular if and only if r(i) # 0 for all i € Z.

o ac Ais called P-regular if a ¢ |J,c 4 Pa. Note: P-regular
implies regular.

Lemma 1
Let R=A+Band S= A+ Q@B.
If an element a € A is P-regular, then a € R (resp. S) is a
regular element of R (resp. S).
o If an ideal / C A is P-regular, then | + B € R (resp. S) is
a regular ideal of R (resp. S).
If a+ b e R (resp. S) is a regular element with a € A and
b € B (resp. @B), then a € A is a P-regular element.
o If I+ B C R (resp. S) is a regular ideal with | C A, then
I C Ais a P-regular ideal.
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S to have [X]
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Let [X] be some property of reduced rings from before.
R has [X] if and only if S has [X] if and only if A has [X]
R or S has [X] if and only if (replace “regular” in
definition [X] with “P-regular” for A/etc.)
R and S never have [X]

More requirements on A or P than (2) are needed for R or
S to have [X]

Examples
Type 1 — von Neumann regular
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Let [X] be some property of reduced rings from before.
R has [X] if and only if S has [X] if and only if A has [X]
R or S has [X] if and only if (replace “regular” in
definition [X] with “P-regular” for A/etc.)
R and S never have [X]

More requirements on A or P than (2) are needed for R or
S to have [X]

Examples

Type 1 — von Neumann regular
Type 2 — Marot




Properties in
A+-B Rings

Alexandra
Epstein

Properties in
A+B and
A+QB Rings

“Types" of Theorems

R=A+B,S=A+QB

Let [X] be some property of reduced rings from before.
R has [X] if and only if S has [X] if and only if A has [X]
R or S has [X] if and only if (replace “regular” in
definition [X] with “P-regular” for A/etc.)
R and S never have [X]

More requirements on A or P than (2) are needed for R or
S to have [X]

Examples

Type 1 — von Neumann regular
Type 2 — Marot
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R=A+B,S=A+QB

Let [X] be some property of reduced rings from before.
R has [X] if and only if S has [X] if and only if A has [X]
R or S has [X] if and only if (replace “regular” in
definition [X] with “P-regular” for A/etc.)
R and S never have [X]

More requirements on A or P than (2) are needed for R or
S to have [X]

Examples

Type 1 — von Neumann regular
Type 2 — Marot

Type 3 — local

Type 4 — h-local **
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Relationship of property between A, R, and S

R=A+ B, S=A+ QB, [X] some property

A has [X]
/// ’ K\\\\\
R has [X] ;7227222772 727277270 S has [X]

A goal: determine which implications hold and which do not
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Let R=A+ B. Ris an h-local ring if and only if all of the
following hold:

Every P-regular element of A has finite character in A.
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Let R=A+ B. Ris an h-local ring if and only if all of the
following hold:

Every P-regular element of A has finite character in A.

Every P-regular prime ideal of A is contained in a unique
maximal ideal of A.
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A ring A is said to be h-local if
o every regular element of A is contained in only finitely
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o every regular prime ideal of A is contained in a unique
maximal ideal.

Theorem 1
Let R=A+ B. Ris an h-local ring if and only if all of the
following hold:
Every P-regular element of A has finite character in A.
Every P-regular prime ideal of A is contained in a unique
maximal ideal of A.
For every P-regular prime ideal P € Spec(A), Py € P for
all P, € P.
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h-local

A ring A is said to be h-local if
o every regular element of A is contained in only finitely
many maximal ideals (finite character)
o every regular prime ideal of A is contained in a unique
maximal ideal.

Theorem 1
Let R=A+ B. Ris an h-local ring if and only if all of the
following hold:
Every P-regular element of A has finite character in A.
Every P-regular prime ideal of A is contained in a unique
maximal ideal of A.
For every P-regular prime ideal P € Spec(A), Py € P for
all P, € P.
A/ Py is h-local for all P, € P.




Properties in
A+-B Rings

Alexandra
Epstein

Let S= A+ QB.

h-local in
A+4B and
A+QB



h-local (cont.)

Properties in
A+-B Rings

Alexandra
Epstein

Theorem 2

Let S = A+ @B. S is h-local if and only if each P-regular
element of A has finite character and each P-regular prime
ideal of A is contained in a unique maximal ideal of A.

Note that this is just (1) and (2) from Theorem 1.
AL and
A+QB
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h-local (cont.)

Theorem 2

Let S = A+ @B. S is h-local if and only if each P-regular
element of A has finite character and each P-regular prime
ideal of A is contained in a unique maximal ideal of A.

Note that this is just (1) and (2) from Theorem 1.

M; € Max(A 4+ @B) — exclude (3)
(A+ QB)ei =2 Q(A/P;) a field (so h-local) — exclude (4)
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@ or @ fails: As the prime ideals of A correspond to the prime
ideals of R containing B, it follows R is not h-local.

© fails: There exists Q C Spec(A) P-regular properly
containing some P, € P. Note Q C N € Max(A). Forae Q
P-regular, a € R regular contained in N + M; with

i = (a,n) €T forall neN; R is not h-local.
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@ or @ fails: As the prime ideals of A correspond to the prime
ideals of R containing B, it follows R is not h-local.

© fails: There exists Q C Spec(A) P-regular properly
containing some P, € P. Note Q C N € Max(A). Forae Q
‘P-regular, a € R regular contained in N 4+ M; with

i = (a,n) €T forall neN; R is not h-local.

o fails: If, for some P, € P, a+ P, € A/P, nonzero and
contained in Ni/P, € Max(A/P,), k € K (K infinite),
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= (contrapositive)

@ or @ fails: As the prime ideals of A correspond to the prime
ideals of R containing B, it follows R is not h-local.

© fails: There exists Q C Spec(A) P-regular properly
containing some P, € P. Note Q C N € Max(A). Forae Q
‘P-regular, a € R regular contained in N 4+ M; with

i = (a,n) €T forall neN; R is not h-local.

o fails: If, for some P, € P, a+ P, € A/P, nonzero and
contained in Ny /P, € Max(A/P,), k € K (K infinite), then
fori=(a,1) €Z, 1+ ei(a—1) € R is regular and contained in
Nk + M; € Max(R), Vk € K; so R is not h-local.
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Proof of Theorem 1

= (contrapositive)

or @ fails: As the prime ideals of A correspond to the prime
ideals of R containing B, it follows R is not h-local.

fails: There exists @ C Spec(A) P-regular properly
containing some P, € P. Note Q C N € Max(A). Forae Q
‘P-regular, a € R regular contained in N 4+ M; with
i = (a,n) €T forall neN; R is not h-local.

fails: If, for some P, € P, a+ P, € A/P, nonzero and
contained in Ny /P, € Max(A/P,), k € K (K infinite), then
fori=(a,1) €Z, 1+ ei(a—1) € R is regular and contained in
Nk + M; € Max(R), Vk € K; so R is not h-local. (Similar
argument if Q/P, € Spec(A/P,) is a nonzero contained in
more than one maximal ideal of A/P,.)
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If a+ b € R regular then @ implies a + b contained in only
finitely many maximal ideals of R containing B.
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If a+ b € R regular then @ implies a + b contained in only
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many maximal ideals containing M; for each i € 7 such that

b(i) # 0.
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b(i) # 0.
@ implies that if Q + B € Spec(R) is regular,
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=

If a+ b € R regular then @ implies a + b contained in only
finitely many maximal ideals of R containing B. @ guarantees
that a € R is not contained in any maximal ideals of R which
do not contain B. @ implies that a + b is contained in finitely
many maximal ideals containing M; for each i € 7 such that

b(i) # 0.

@ implies that if Q + B € Spec(R) is regular, then it is
contained in a unique maximal ideal of R, which has the form
N+ B with Q C N € Max(A).
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=

If a+ b € R regular then @ implies a + b contained in only
finitely many maximal ideals of R containing B. @ guarantees
that a € R is not contained in any maximal ideals of R which
do not contain B. @ implies that a + b is contained in finitely
many maximal ideals containing M; for each i € 7 such that

b(i) # 0.

@ implies that if Q + B € Spec(R) is regular, then it is
contained in a unique maximal ideal of R, which has the form
N+ B with Q C N € Max(A).

@ implies that if Q + M; € Spec(R) is regular
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iy If a+ b € R regular then @ implies a + b contained in only
finitely many maximal ideals of R containing B. guarantees
that a € R is not contained in any maximal ideals of R which
do not contain B. implies that a + b is contained in finitely

many maximal ideals containing M; for each i € 7 such that
b(i) # 0.

implies that if Q + B € Spec(R) is regular, then it is
g‘fga;:; contained in a unique maximal ideal of R, which has the form
AnRei N+ B with Q C N € Max(A).

implies that if Q@ + M; € Spec(R) is regular for some i € Z,
then it is contained in a unique maximal ideal of R, which has

the form N + M; with Q/P; C N/P; € Max(A/P;).

O
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@ A/P, is h-local for all P, € P.
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Independence of conditions

@ Every P-regular element of A has finite character in A.

@ Every P-regular prime ideal of A is contained in a unique
maximal ideal of A.

© For every P-regular prime ideal P € Spec(A), Py € P for
all P, € P.

@ A/P, is h-local for all P, € P.

We give examples to show that these conditions are
independent of each other, and thus all are required for
Theorem 1.

For each example, we give a ring A and set of primes
P C Spec(A) which will satisfy the stated conditions.
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Example 1: only (1) fails
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Independence of conditions

Every P-regular element of A has finite character in A.

Every P-regular prime ideal of A is contained in a unique
maximal ideal of A.

For every P-regular prime ideal P € Spec(A), P, € P for
all P, € P.

A/ Py is h-local for all P, € P.

Example 1: only (1) fails

Let AN be the Stone-Cech compactification of N and take
A = C(pN).
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Independence of conditions

Every P-regular element of A has finite character in A.

Every P-regular prime ideal of A is contained in a unique
maximal ideal of A.

For every P-regular prime ideal P € Spec(A), P, € P for
all P, € P.

A/ Py is h-local for all P, € P.

Example 1: only (1) fails

Let AN be the Stone-Cech compactification of N and take
A = C(PN). For each p € BN,

M, = {f € C(BN) | f(p) = 0} € Max(A).
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Independence of conditions

Every P-regular element of A has finite character in A.
Every P-regular prime ideal of A is contained in a unique
maximal ideal of A.

For every P-regular prime ideal P € Spec(A), P, € P for
all P, € P.

A/ Py is h-local for all P, € P.

Example 1: only (1) fails

Let AN be the Stone-Cech compactification of N and take
A = C(PN). For each p € BN,

M, = {f € C(BN) | f(p) = 0} € Max(A). Take

P = {M, € Max(A) | p € N}.
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Independence of conditions

Every P-regular element of A has finite character in A.
Every P-regular prime ideal of A is contained in a unique
maximal ideal of A.

For every P-regular prime ideal P € Spec(A), P, € P for
all P, € P.

A/ Py is h-local for all P, € P.

Example 1: only (1) fails

Let AN be the Stone-Cech compactification of N and take
A = C(PN). For each p € BN,

M, = {f € C(BN) | f(p) = 0} € Max(A). Take

P = {M, € Max(A) | p € N}.
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@ Every P-regular element of A has finite character in A.

@ Every P-regular prime ideal of A is contained in a unique
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all P, € P.

@ A/P, is h-local for all P, € P.

Example 2: only (2) fails
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Independence of conditions

@ Every P-regular element of A has finite character in A.

@ Every P-regular prime ideal of A is contained in a unique
maximal ideal of A.

© For every P-regular prime ideal P € Spec(A), P, € P for
all P, € P.

@ A/P, is h-local for all P, € P.

Example 2: only (2) fails

Let D = T'K[X, Y] where
T =KX, Y]\ ((X,Y)U(X,Y —1)).
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Independence of conditions

Every P-regular element of A has finite character in A.
Every P-regular prime ideal of A is contained in a unique
maximal ideal of A.

For every P-regular prime ideal P € Spec(A), P, € P for
all P, € P.

A/ Py is h-local for all P, € P.

Example 2: only (2) fails

Let D = T K[X, Y] where

T = KX, Y]\ (X, Y)U(X,Y —1)). Take A= A' + QB
where A' = D x D and P’ = {D x (0), (0) x D}.
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Independence of conditions

Every P-regular element of A has finite character in A.
Every P-regular prime ideal of A is contained in a unique
maximal ideal of A.

For every P-regular prime ideal P € Spec(A), P, € P for
all P, € P.

A/ Py is h-local for all P, € P.

Example 2: only (2) fails

Let D = T K[X, Y] where

T = KX, Y]\ (X, Y)U(X,Y —1)). Take A= A' + QB
where A= D x D and P’ = {D x (0),(0) x D}. Then take
P={M|ieTl}.




Properties in
A+-B Rings

Alexandra
Epstein

h-local in
A+B and
A+QB

Independence of conditions

@ Every P-regular element of A has finite character in A.

@ Every P-regular prime ideal of A is contained in a unique
maximal ideal of A.

© For every P-regular prime ideal P € Spec(A), P, € P for
all P, € P.

@ A/P, is h-local for all P, € P.

Example 3: only (3) fails
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Independence of conditions

@ Every P-regular element of A has finite character in A.

@ Every P-regular prime ideal of A is contained in a unique
maximal ideal of A.

© For every P-regular prime ideal P € Spec(A), P, € P for
all P, € P.

@ A/P, is h-local for all P, € P.

Example 3: only (3) fails

Let A= K[X, Y](x,y), the localization of K[X, Y] at the
maximal ideal (X, Y)
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Independence of conditions

Every P-regular element of A has finite character in A.
Every P-regular prime ideal of A is contained in a unique
maximal ideal of A.

For every P-regular prime ideal P € Spec(A), P, € P for
all P, € P.

A/ Py is h-local for all P, € P.

Example 3: only (3) fails

Let A= K[X, Y](x,y), the localization of K[X, Y] at the
maximal ideal (X, Y) and

P = {nonzero principal prime ideals of A} \ (X)A.
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Independence of conditions

Every P-regular element of A has finite character in A.
Every P-regular prime ideal of A is contained in a unique
maximal ideal of A.

For every P-regular prime ideal P € Spec(A), P, € P for
all P, € P.

A/ Py is h-local for all P, € P.

Example 3: only (3) fails

Let A= K[X, Y](x,y), the localization of K[X, Y] at the
maximal ideal (X, Y) and

P = {nonzero principal prime ideals of A} \ (X)A.
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Independence of conditions

@ Every P-regular element of A has finite character in A.

@ Every P-regular prime ideal of A is contained in a unique
maximal ideal of A.

© For every P-regular prime ideal P € Spec(A), P, € P for
all P, € P.

@ A/P, is h-local for all P, € P.

Example 4: only (4) fails
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Independence of conditions

@ Every P-regular element of A has finite character in A.

@ Every P-regular prime ideal of A is contained in a unique
maximal ideal of A.

© For every P-regular prime ideal P € Spec(A), P, € P for
all P, € P.

@ A/P, is h-local for all P, € P.

Example 4: only (4) fails

Let A= K[X,Y,Z] and
P = {nonzero principal prime ideals of A}.
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h-local between A, R, and S

R=A+4+B S=A+QB

A/h-logal
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R=A+4+B S=A+QB
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