Properties in A+B Rings

Alexandra Epstein

University of Colorado Colorado Springs ARCS Seminar

April 6, 2022

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Table of Contents

Introduction

4 Properties in A+B and A+QB Rings

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

(5) h-local in A+B and A+QB

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

• Annihilators in commutative rings

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB

• Annihilators in commutative rings

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

• Annihilator conditions

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB

• Annihilators in commutative rings

- Annihilator conditions
- Ideals closed under taking double annihilators of elements/finite subsets

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB

Annihilators in commutative rings

- Annihilator conditions
- Ideals closed under taking double annihilators of elements/finite subsets

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• A + B rings used as examples

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB • Annihilators in commutative rings

- Annihilator conditions
- Ideals closed under taking double annihilators of elements/finite subsets
- A + B rings used as examples
- Various authors investigated properties of A + B rings, as well as various related constructions (sometimes still using the name 'A + B ring').

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB • Annihilators in commutative rings

- Annihilator conditions
- Ideals closed under taking double annihilators of elements/finite subsets
- A + B rings used as examples
- Various authors investigated properties of A + B rings, as well as various related constructions (sometimes still using the name 'A + B ring').
- Focus: look at a variety of properties and determine when A + B satisfies each.

Some possible properties of reduced rings

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

	Definitions
Properties in A+B Rings	
Alexandra Epstein	All rings are assumed to be commutative with $1 eq 0$.
ntroduction	
Definitions	
A+B and A+QB Construction	
Properties in A+B and A+QB Rings	
n-local in A+B and A+QB	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

D A A C P A A A h-A A

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB All rings are assumed to be commutative with $1 \neq 0$.

R is a *reduced* ring if 0 is the only nilpotent element $(x^n = 0 \text{ implies } x = 0)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \text{Properties in} \\ \text{A+B and} \\ \text{A+QB Rings} \end{array}$

h-local in A+B and A+QB All rings are assumed to be commutative with $1 \neq 0$.

R is a *reduced* ring if 0 is the only nilpotent element $(x^n = 0 \text{ implies } x = 0)$. An element of *R* is called *regular* if it is not a zero divisor, and an ideal of *R* is called *regular* if it contains a regular element.

Properties in A+B Rings

> Alexandra Epstein

Introductior

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB All rings are assumed to be commutative with $1 \neq 0$.

R is a *reduced* ring if 0 is the only nilpotent element $(x^n = 0 \text{ implies } x = 0)$. An element of *R* is called *regular* if it is not a zero divisor, and an ideal of *R* is called *regular* if it contains a regular element.

We say $I \subseteq R$ is a *minimal prime* ideal if it is minimal (under inclusion) with respect to being a prime ideal.

Properties in A+B Rings

> Alexandra Epstein

Introductior

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB All rings are assumed to be commutative with $1\neq 0.$

R is a *reduced* ring if 0 is the only nilpotent element $(x^n = 0 \text{ implies } x = 0)$. An element of *R* is called *regular* if it is not a zero divisor, and an ideal of *R* is called *regular* if it contains a regular element.

We say $I \subseteq R$ is a *minimal prime* ideal if it is minimal (under inclusion) with respect to being a prime ideal. We denote the set of all prime ideals of R by Spec(R).

Properties in A+B Rings

> Alexandra Epstein

Introductior

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB All rings are assumed to be commutative with $1 \neq 0$.

R is a *reduced* ring if 0 is the only nilpotent element $(x^n = 0 \text{ implies } x = 0)$. An element of *R* is called *regular* if it is not a zero divisor, and an ideal of *R* is called *regular* if it contains a regular element.

We say $I \subseteq R$ is a *minimal prime* ideal if it is minimal (under inclusion) with respect to being a prime ideal. We denote the set of all prime ideals of R by Spec(R).

We let Q(R) denote the *total quotient ring* of R (invert all non-zero divisors).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB Let A be a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ with index set A such that $\bigcap_{\alpha \in \mathcal{A}} P_{\alpha} = 0.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB Let A be a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ with index set A such that $\bigcap_{\alpha \in \mathcal{A}} P_{\alpha} = 0$. Take $\mathcal{I} = \mathcal{A} \times \mathbb{N}$ and for $i = (\alpha, m) \in \mathcal{I}$, $P_i = P_{\alpha}$.

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB Let A be a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ with index set A such that $\bigcap_{\alpha \in \mathcal{A}} P_{\alpha} = 0$. Take $\mathcal{I} = \mathcal{A} \times \mathbb{N}$ and for $i = (\alpha, m) \in \mathcal{I}$, $P_i = P_{\alpha}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A + B Construction

Identify A with its image in $\prod_{i \in \mathcal{I}} A/P_i$

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB Let A be a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ with index set A such that $\bigcap_{\alpha \in \mathcal{A}} P_{\alpha} = 0$. Take $\mathcal{I} = \mathcal{A} \times \mathbb{N}$ and for $i = (\alpha, m) \in \mathcal{I}$, $P_i = P_{\alpha}$.

A + B Construction

Identify A with its image in
$$\prod_{i \in \mathcal{I}} A/P_i$$
 and let $B = \sum_{i \in \mathcal{I}} A/P_i$.

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB Let A be a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ with index set A such that $\bigcap_{\alpha \in \mathcal{A}} P_{\alpha} = 0$. Take $\mathcal{I} = \mathcal{A} \times \mathbb{N}$ and for $i = (\alpha, m) \in \mathcal{I}$, $P_i = P_{\alpha}$.

A + B Construction

Identify A with its image in $\prod_{i \in \mathcal{I}} A/P_i$ and let $B = \sum_{i \in \mathcal{I}} A/P_i$. R = A + B is our desired ring, with addition and multiplication defined coordinate-wise.

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB Let A be a ring and $\mathcal{P} \subseteq \text{Spec}(A)$ with index set A such that $\bigcap_{\alpha \in \mathcal{A}} P_{\alpha} = 0$. Take $\mathcal{I} = \mathcal{A} \times \mathbb{N}$ and for $i = (\alpha, m) \in \mathcal{I}$, $P_i = P_{\alpha}$.

A + B Construction

Identify A with its image in $\prod_{i \in \mathcal{I}} A/P_i$ and let $B = \sum_{i \in \mathcal{I}} A/P_i$. R = A + B is our desired ring, with addition and multiplication defined coordinate-wise.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Take $a \in A$.

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB Let A be a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ with index set A such that $\bigcap_{\alpha \in \mathcal{A}} P_{\alpha} = 0$. Take $\mathcal{I} = \mathcal{A} \times \mathbb{N}$ and for $i = (\alpha, m) \in \mathcal{I}$, $P_i = P_{\alpha}$.

A + B Construction

Identify A with its image in $\prod_{i \in \mathcal{I}} A/P_i$ and let $B = \sum_{i \in \mathcal{I}} A/P_i$. R = A + B is our desired ring, with addition and multiplication defined coordinate-wise.

Take $a \in A$. When viewed in R, we have that a looks like:

$$(\ldots a + P_{i_1}, a + P_{(\alpha,1)}, a + P_{(\alpha,2)}, a + P_{(\alpha,3)}, \ldots, a + P_{i_2} \ldots)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB Let A be a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ with index set A such that $\bigcap_{\alpha \in \mathcal{A}} P_{\alpha} = 0$. Take $\mathcal{I} = \mathcal{A} \times \mathbb{N}$ and for $i = (\alpha, m) \in \mathcal{I}$, $P_i = P_{\alpha}$.

A + B Construction

Identify A with its image in $\prod_{i \in \mathcal{I}} A/P_i$ and let $B = \sum_{i \in \mathcal{I}} A/P_i$. R = A + B is our desired ring, with addition and multiplication defined coordinate-wise.

Take $a \in A$. When viewed in R, we have that a looks like:

$$(\ldots a + P_{i_1}, \underbrace{a + P_{(\alpha,1)}, a + P_{(\alpha,2)}, a + P_{(\alpha,3)}, \ldots, a + P_{i_2} \ldots)$$

 $a \in R$ constant on each α -block; $a + P_{\alpha}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB Let A be a ring and $\mathcal{P} \subseteq \text{Spec}(A)$ with index set A such that $\bigcap_{\alpha \in \mathcal{A}} P_{\alpha} = 0$. Take $\mathcal{I} = \mathcal{A} \times \mathbb{N}$ and for $i = (\alpha, m) \in \mathcal{I}$, $P_i = P_{\alpha}$.

A + B Construction

Identify A with its image in $\prod_{i \in \mathcal{I}} A/P_i$ and let $B = \sum_{i \in \mathcal{I}} A/P_i$. R = A + B is our desired ring, with addition and multiplication defined coordinate-wise.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Take $a \in A$ and $b \in B$. So a + b looks like:

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB Let A be a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ with index set A such that $\bigcap_{\alpha \in \mathcal{A}} P_{\alpha} = 0$. Take $\mathcal{I} = \mathcal{A} \times \mathbb{N}$ and for $i = (\alpha, m) \in \mathcal{I}$, $P_i = P_{\alpha}$.

A + B Construction

Identify A with its image in $\prod_{i \in \mathcal{I}} A/P_i$ and let $B = \sum_{i \in \mathcal{I}} A/P_i$. R = A + B is our desired ring, with addition and multiplication defined coordinate-wise.

Take $a \in A$ and $b \in B$. So a + b looks like:

 $(\ldots a + P_{i_1}, x_1 + P_{(\alpha,1)}, a + P_{(\alpha,2)}, x_2 + P_{(\alpha,3)}, \ldots, a + P_{i_2} \ldots)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB Let A be a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ with index set A such that $\bigcap_{\alpha \in \mathcal{A}} P_{\alpha} = 0$. Take $\mathcal{I} = \mathcal{A} \times \mathbb{N}$ and for $i = (\alpha, m) \in \mathcal{I}$, $P_i = P_{\alpha}$.

A + B Construction

Identify A with its image in $\prod_{i \in \mathcal{I}} A/P_i$ and let $B = \sum_{i \in \mathcal{I}} A/P_i$. R = A + B is our desired ring, with addition and multiplication defined coordinate-wise.

Take $a \in A$ and $b \in B$. So a + b looks like:

$$(\ldots a + P_{i_1}, x_1 + P_{(\alpha,1)}, a + P_{(\alpha,2)}, x_2 + P_{(\alpha,3)}, \ldots, a + P_{i_2} \ldots)$$

Note we are only changing $a \in R$ in finitely many components, based on the finitely many nonzero components of b.

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB (We will assume from now that R = A + B is constructed as before from a ring A and set of prime ideals \mathcal{P} .)

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB (We will assume from now that R = A + B is constructed as before from a ring A and set of prime ideals \mathcal{P} .)

0 ∈ R is the element which is zero in every component;
 1 ∈ R is the element which is 1 in every component (the image of 1 ∈ A in R).

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB (We will assume from now that R = A + B is constructed as before from a ring A and set of prime ideals \mathcal{P} .)

0 ∈ R is the element which is zero in every component;
 1 ∈ R is the element which is 1 in every component (the image of 1 ∈ A in R).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• *R* is reduced.

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB (We will assume from now that R = A + B is constructed as before from a ring A and set of prime ideals \mathcal{P} .)

- 0 ∈ R is the element which is zero in every component;
 1 ∈ R is the element which is 1 in every component (the image of 1 ∈ A in R).
- *R* is reduced.
- $A \cap B = 0$, so every element of R can be written uniquely as a + b with $a \in A$ and $b \in B$.

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB (We will assume from now that R = A + B is constructed as before from a ring A and set of prime ideals \mathcal{P} .)

- 0 ∈ R is the element which is zero in every component;
 1 ∈ R is the element which is 1 in every component (the image of 1 ∈ A in R).
- *R* is reduced.
- $A \cap B = 0$, so every element of R can be written uniquely as a + b with $a \in A$ and $b \in B$.
- For $i \in \mathcal{I}$ and $r \in R$, let r(i) denote the i^{th} -component of r in A/P_i .

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB (We will assume from now that R = A + B is constructed as before from a ring A and set of prime ideals \mathcal{P} .)

- $0 \in R$ is the element which is zero in every component; $1 \in R$ is the element which is 1 in every component (the image of $1 \in A$ in R).
- R is reduced.
- $A \cap B = 0$, so every element of R can be written uniquely as a + b with $a \in A$ and $b \in B$.
- For $i \in \mathcal{I}$ and $r \in R$, let r(i) denote the i^{th} -component of r in A/P_i .
- For *i* ∈ *I*, let *e_i* ∈ *R* denote the idempotent which is 1 in the *i*th-component and zero elsewhere. *e_i* ∈ *B*.

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB (We will assume from now that R = A + B is constructed as before from a ring A and set of prime ideals \mathcal{P} .)

- $0 \in R$ is the element which is zero in every component; $1 \in R$ is the element which is 1 in every component (the image of $1 \in A$ in R).
- *R* is reduced.
- $A \cap B = 0$, so every element of R can be written uniquely as a + b with $a \in A$ and $b \in B$.
- For $i \in \mathcal{I}$ and $r \in R$, let r(i) denote the i^{th} -component of r in A/P_i .
- For *i* ∈ *I*, let *e_i* ∈ *R* denote the idempotent which is 1 in the *i*th-component and zero elsewhere. *e_i* ∈ *B*.

• $e_i R \cong A/P_i$

 $\operatorname{Spec}(A+B)$

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

$$R = A + B$$

Prime ideals of R which do not contain B

 $\operatorname{Spec}(A+B)$

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

$$R = A + B$$

Prime ideals of R which do not contain B

 $i \in \mathcal{I}, M_i = \{r \in R \mid r(i) = 0\}$ are precisely the minimal primes not containing B.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $\operatorname{Spec}(A+B)$

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

$$R = A + B$$

Prime ideals of R which do not contain B

 $i \in \mathcal{I}, M_i = \{r \in R \mid r(i) = 0\}$ are precisely the minimal primes not containing *B*. All other primes not containing *B* are of the form $Q + M_i$ where $Q \in \text{Spec}(A)$ contains P_i .

 $\operatorname{Spec}(A+B)$

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB

$$R = A + B$$

Prime ideals of R which do not contain B

 $i \in \mathcal{I}, M_i = \{r \in R \mid r(i) = 0\}$ are precisely the minimal primes not containing *B*. All other primes not containing *B* are of the form $Q + M_i$ where $Q \in \text{Spec}(A)$ contains P_i .

Note: No proper ideal of R can contain more than one of the M_i 's.

 $\operatorname{Spec}(A+B)$

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB

$$R = A + B$$

Prime ideals of R which do not contain B

 $i \in \mathcal{I}, M_i = \{r \in R \mid r(i) = 0\}$ are precisely the minimal primes not containing *B*. All other primes not containing *B* are of the form $Q + M_i$ where $Q \in \text{Spec}(A)$ contains P_i .

Note: No proper ideal of R can contain more than one of the M_i 's.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Prime ideals of R containing B

 $\operatorname{Spec}(A+B)$

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB

$$R = A + B$$

Prime ideals of R which do not contain B

 $i \in \mathcal{I}, M_i = \{r \in R \mid r(i) = 0\}$ are precisely the minimal primes not containing *B*. All other primes not containing *B* are of the form $Q + M_i$ where $Q \in \text{Spec}(A)$ contains P_i .

Note: No proper ideal of R can contain more than one of the M_i 's.

Prime ideals of R containing B

Note $R/B \cong A$. So the prime ideals of R containing B are in one-to-one correspondence with the prime ideals of A.

 $\operatorname{Spec}(A+B)$

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB

$$R = A + B$$

Prime ideals of R which do not contain B

 $i \in \mathcal{I}, M_i = \{r \in R \mid r(i) = 0\}$ are precisely the minimal primes not containing *B*. All other primes not containing *B* are of the form $Q + M_i$ where $Q \in \text{Spec}(A)$ contains P_i .

Note: No proper ideal of R can contain more than one of the M_i 's.

Prime ideals of R containing B

Note $R/B \cong A$. So the prime ideals of R containing B are in one-to-one correspondence with the prime ideals of A.

P + B with $P \in \text{Spec}(A)$

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

Take A a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ as before.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \text{Properties in} \\ \text{A+B and} \\ \text{A+QB Rings} \end{array}$

h-local in A+B and A+QB

Take A a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ as before.

A + QB Construction

Identify A with its image in $\prod_{i \in \mathcal{I}} Q(A/P_i)$

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB Take A a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ as before.

A + QB Construction

Identify A with its image in $\prod_{i \in \mathcal{I}} Q(A/P_i)$ and let

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $QB = \sum_{i \in \mathcal{I}} Q(A/P_i).$

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \text{Properties in} \\ \text{A+B and} \\ \text{A+QB Rings} \end{array}$

h-local in A+B and A+QB Take A a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ as before.

A + QB Construction

Identify A with its image in $\prod_{i\in\mathcal{I}}Q(A/P_i)$ and let

 $QB = \sum_{i \in \mathcal{I}} Q(A/P_i)$. S = A + QB is our desired ring, with

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

addition and multiplication defined coordinate-wise.

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \text{Properties in} \\ \text{A+B and} \\ \text{A+QB Rings} \end{array}$

h-local in A+B and A+QB Take A a ring and $\mathcal{P} \subseteq \operatorname{Spec}(A)$ as before.

A + QB Construction

Identify A with its image in $\prod_{i\in\mathcal{I}}Q(A/P_i)$ and let

 $QB = \sum_{i \in \mathcal{I}} Q(A/P_i)$. S = A + QB is our desired ring, with

addition and multiplication defined coordinate-wise.

Note that (with the same base ring A and set of primes \mathcal{P}) $A + B \subseteq A + QB$; equality holds if and only if $\mathcal{P} \subseteq Max(A)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB (We will assume from now that S = A + QB is constructed as before from a ring A and set of prime ideals \mathcal{P} .)

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB (We will assume from now that S = A + QB is constructed as before from a ring A and set of prime ideals \mathcal{P} .)

0 ∈ S is the element which is zero in every component;
 1 ∈ S is the element which is 1 in every component (the image of 1 ∈ A in S).

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB (We will assume from now that S = A + QB is constructed as before from a ring A and set of prime ideals \mathcal{P} .)

0 ∈ S is the element which is zero in every component;
 1 ∈ S is the element which is 1 in every component (the image of 1 ∈ A in S).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• *S* is reduced.

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB (We will assume from now that S = A + QB is constructed as before from a ring A and set of prime ideals \mathcal{P} .)

• $0 \in S$ is the element which is zero in every component; $1 \in S$ is the element which is 1 in every component (the image of $1 \in A$ in S).

- *S* is reduced.
- A ∩ QB = 0, so every element of S can be written uniquely as a + b with a ∈ A and b ∈ QB.

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB (We will assume from now that S = A + QB is constructed as before from a ring A and set of prime ideals \mathcal{P} .)

- $0 \in S$ is the element which is zero in every component; $1 \in S$ is the element which is 1 in every component (the image of $1 \in A$ in S).
- *S* is reduced.
- A ∩ QB = 0, so every element of S can be written uniquely as a + b with a ∈ A and b ∈ QB.
- For $i \in \mathcal{I}$ and $r \in S$, let r(i) denote the i^{th} -component of r in $Q(A/P_i)$.

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB (We will assume from now that S = A + QB is constructed as before from a ring A and set of prime ideals \mathcal{P} .)

- $0 \in S$ is the element which is zero in every component; $1 \in S$ is the element which is 1 in every component (the image of $1 \in A$ in S).
- *S* is reduced.
- A ∩ QB = 0, so every element of S can be written uniquely as a + b with a ∈ A and b ∈ QB.
- For $i \in \mathcal{I}$ and $r \in S$, let r(i) denote the i^{th} -component of r in $Q(A/P_i)$.
- For *i* ∈ *I*, let *e_i* ∈ *S* denote the idempotent which is 1 in the *i*th-component and zero elsewhere. *e_i* ∈ *QB*.

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB (We will assume from now that S = A + QB is constructed as before from a ring A and set of prime ideals \mathcal{P} .)

- $0 \in S$ is the element which is zero in every component; $1 \in S$ is the element which is 1 in every component (the image of $1 \in A$ in S).
- *S* is reduced.
- A ∩ QB = 0, so every element of S can be written uniquely as a + b with a ∈ A and b ∈ QB.
- For $i \in \mathcal{I}$ and $r \in S$, let r(i) denote the i^{th} -component of r in $Q(A/P_i)$.
- For *i* ∈ *I*, let *e_i* ∈ *S* denote the idempotent which is 1 in the *i*th-component and zero elsewhere. *e_i* ∈ *QB*.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• $e_i S \cong Q(A/P_i)$

 $\operatorname{Spec}(A + QB)$

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB S = A + QB

Prime ideals of S which do not contain QB

 $\operatorname{Spec}(A + QB)$

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

$$S = A + QB$$

Prime ideals of S which do not contain QB

 $i \in \mathcal{I}, M_i = \{r \in R \mid r(i) = 0\}$ are precisely the minimal primes not containing *QB*. These are also maximal ideals.

 $\operatorname{Spec}(A + QB)$

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB S = A + QB

Prime ideals of S which do not contain QB

 $i \in \mathcal{I}, M_i = \{r \in R \mid r(i) = 0\}$ are precisely the minimal primes not containing *QB*. These are also maximal ideals.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Prime ideals of S containing QB

 $\operatorname{Spec}(A + QB)$

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \text{Properties in} \\ \text{A+B and} \\ \text{A+QB Rings} \end{array}$

h-local in A+B and A+QB S = A + QB

Prime ideals of S which do not contain QB

 $i \in \mathcal{I}, M_i = \{r \in R \mid r(i) = 0\}$ are precisely the minimal primes not containing *QB*. These are also maximal ideals.

Prime ideals of S containing QB

Note $S/QB \cong A$. So the prime ideals of S containing QB are in one-to-one correspondence with the prime ideals of A.

P + QB with $P \in \text{Spec}(A)$

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB R = A + B, S = A + QB

• $r \in R$ (or S) is regular if and only if $r(i) \neq 0$ for all $i \in \mathcal{I}$.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB R = A + B, S = A + QB

• $r \in R$ (or S) is regular if and only if $r(i) \neq 0$ for all $i \in \mathcal{I}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• $a \in A$ is called \mathcal{P} -regular if $a \notin \bigcup_{\alpha \in \mathcal{A}} P_{\alpha}$.

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB R = A + B, S = A + QB

• $r \in R$ (or S) is regular if and only if $r(i) \neq 0$ for all $i \in \mathcal{I}$.

a ∈ A is called *P*-regular if a ∉ U_{α∈A} P_α. Note: *P*-regular implies regular.

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \text{Properties in} \\ \text{A+B and} \\ \text{A+QB Rings} \end{array}$

h-local in A+B and A+QB R = A + B, S = A + QB

- $r \in R$ (or S) is regular if and only if $r(i) \neq 0$ for all $i \in \mathcal{I}$.
- a ∈ A is called *P*-regular if a ∉ U_{α∈A} P_α. Note: *P*-regular implies regular.

Lemma 1

Let R = A + B and S = A + QB.

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \text{Properties in} \\ \text{A+B and} \\ \text{A+QB Rings} \end{array}$

h-local in A+B and A+QB

- R = A + B, S = A + QB
 - $r \in R$ (or S) is regular if and only if $r(i) \neq 0$ for all $i \in I$.
 - a ∈ A is called *P*-regular if a ∉ U_{α∈A} P_α. Note: *P*-regular implies regular.

- Let R = A + B and S = A + QB.
 - **1** If an element $a \in A$ is \mathcal{P} -regular, then $a \in R$ (resp. S) is a regular element of R (resp. S).

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB

- R = A + B, S = A + QB
 - $r \in R$ (or S) is regular if and only if $r(i) \neq 0$ for all $i \in I$.
 - a ∈ A is called *P*-regular if a ∉ U_{α∈A} P_α. Note: *P*-regular implies regular.

- Let R = A + B and S = A + QB.
 - **1** If an element $a \in A$ is \mathcal{P} -regular, then $a \in R$ (resp. S) is a regular element of R (resp. S).
 - If an ideal $I \subseteq A$ is \mathcal{P} -regular, then $I + B \in R$ (resp. S) is a regular ideal of R (resp. S).

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \text{Properties in} \\ \text{A+B and} \\ \text{A+QB Rings} \end{array}$

h-local in A+B and A+QB

- R = A + B, S = A + QB
 - $r \in R$ (or S) is regular if and only if $r(i) \neq 0$ for all $i \in I$.
 - a ∈ A is called *P*-regular if a ∉ U_{α∈A} P_α. Note: *P*-regular implies regular.

- Let R = A + B and S = A + QB.
 - **1** If an element $a \in A$ is \mathcal{P} -regular, then $a \in R$ (resp. S) is a regular element of R (resp. S).
 - If an ideal $I \subseteq A$ is \mathcal{P} -regular, then $I + B \in R$ (resp. S) is a regular ideal of R (resp. S).
 - ② If $a + b \in R$ (resp. S) is a regular element with $a \in A$ and $b \in B$ (resp. QB), then $a \in A$ is a \mathcal{P} -regular element.

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB R = A + B, S = A + QB

• $r \in R$ (or S) is regular if and only if $r(i) \neq 0$ for all $i \in I$.

a ∈ A is called *P*-regular if a ∉ U_{α∈A} P_α. Note: *P*-regular implies regular.

- Let R = A + B and S = A + QB.
 - 1) If an element $a \in A$ is \mathcal{P} -regular, then $a \in R$ (resp. S) is a regular element of R (resp. S).
 - If an ideal $I \subseteq A$ is \mathcal{P} -regular, then $I + B \in R$ (resp. S) is a regular ideal of R (resp. S).
 - ② If $a + b \in R$ (resp. S) is a regular element with $a \in A$ and $b \in B$ (resp. QB), then $a \in A$ is a \mathcal{P} -regular element.
 - If $I + B \subseteq R$ (resp. S) is a regular ideal with $I \subseteq A$, then $I \subseteq A$ is a \mathcal{P} -regular ideal.

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

R = A + B, S = A + QB

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

R = A + B, S = A + QB

Let [X] be some property of reduced rings from before.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

R = A + B, S = A + QB

Let [X] be some property of reduced rings from before. **1** *R* has [X] if and only if *S* has [X] if and only if *A* has [X]

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

R = A + B, S = A + QB

Let [X] be some property of reduced rings from before. **1** *R* has [X] if and only if *S* has [X] if and only if *A* has [X]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 R or S has [X] if and only if (replace "regular" in definition [X] with "P-regular" for A/etc.)

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

R = A + B, S = A + QB

Let [X] be some property of reduced rings from before.

R has [X] if and only if S has [X] if and only if A has [X]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- R or S has [X] if and only if (replace "regular" in definition [X] with "*P*-regular" for A/etc.)
- 8 R and S never have [X]

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

R = A + B, S = A + QB

Let [X] be some property of reduced rings from before.

- **1** R has [X] if and only if S has [X] if and only if A has [X]
- R or S has [X] if and only if (replace "regular" in definition [X] with "P-regular" for A/etc.)
- 8 R and S never have [X]
- One requirements on A or P than (2) are needed for R or S to have [X]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

R = A + B, S = A + QB

Let [X] be some property of reduced rings from before.

- R has [X] if and only if S has [X] if and only if A has [X]
- R or S has [X] if and only if (replace "regular" in definition [X] with "P-regular" for A/etc.)
- 8 R and S never have [X]
- More requirements on A or P than (2) are needed for R or S to have [X]

Examples

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

R = A + B, S = A + QB

Let [X] be some property of reduced rings from before.

- R has [X] if and only if S has [X] if and only if A has [X]
- R or S has [X] if and only if (replace "regular" in definition [X] with "*P*-regular" for A/etc.)
- 8 R and S never have [X]
- More requirements on A or P than (2) are needed for R or S to have [X]

Examples

Type 1 \longrightarrow von Neumann regular

"Types" of Theorems

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

R = A + B, S = A + QB

Let [X] be some property of reduced rings from before.

- R has [X] if and only if S has [X] if and only if A has [X]
- R or S has [X] if and only if (replace "regular" in definition [X] with "P-regular" for A/etc.)
- 8 R and S never have [X]
- More requirements on A or P than (2) are needed for R or S to have [X]

Examples

Type 1 \longrightarrow von Neumann regular Type 2 \longrightarrow Marot

"Types" of Theorems

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

R = A + B, S = A + QB

Let [X] be some property of reduced rings from before.

- I R has [X] if and only if S has [X] if and only if A has [X]
- R or S has [X] if and only if (replace "regular" in definition [X] with "P-regular" for A/etc.)
- 8 R and S never have [X]
- More requirements on A or P than (2) are needed for R or S to have [X]

Examples

Type 1 \longrightarrow von Neumann regular Type 2 \longrightarrow Marot Type 3 \longrightarrow local

"Types" of Theorems

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

R = A + B, S = A + QB

Let [X] be some property of reduced rings from before.

- **1** R has [X] if and only if S has [X] if and only if A has [X]
- R or S has [X] if and only if (replace "regular" in definition [X] with "P-regular" for A/etc.)
- 8 R and S never have [X]
- More requirements on A or P than (2) are needed for R or S to have [X]

Examples

 $\begin{array}{l} \text{Type } 1 \longrightarrow \textit{von Neumann regular} \\ \text{Type } 2 \longrightarrow \textit{Marot} \\ \text{Type } 3 \longrightarrow \textit{local} \\ \text{Type } 4 \longrightarrow \textit{h-local **} \end{array}$

Relationship of property between A, R, and S

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

R = A + B, S = A + QB, [X] some property

Relationship of property between A, R, and S

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Relationship of property between A, R, and S

A goal: determine which implications hold and which do not

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Properties in A+B Rings Alexandra

Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

A ring A is said to be *h-local* if

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB

A ring A is said to be *h*-local if

• every regular element of A is contained in only finitely many maximal ideals (*finite character*)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB

A ring A is said to be *h*-local if

- every regular element of A is contained in only finitely many maximal ideals (*finite character*)
- every regular prime ideal of A is contained in a unique maximal ideal.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \text{Properties in} \\ \text{A+B and} \\ \text{A+QB Rings} \end{array}$

h-local in A+B and A+QB

A ring A is said to be *h*-local if

- every regular element of A is contained in only finitely many maximal ideals (*finite character*)
- every regular prime ideal of A is contained in a unique maximal ideal.

Theorem 1

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \text{Properties in} \\ \text{A+B and} \\ \text{A+QB Rings} \end{array}$

h-local in A+B and A+QB

A ring A is said to be *h-local* if

- every regular element of A is contained in only finitely many maximal ideals (*finite character*)
- every regular prime ideal of A is contained in a unique maximal ideal.

Theorem 1

Let R = A + B. R is an h-local ring if and only if all of the following hold:

1 Every \mathcal{P} -regular element of A has finite character in A.

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \text{Properties in} \\ \text{A+B and} \\ \text{A+QB Rings} \end{array}$

h-local in A+B and A+QB

A ring A is said to be *h-local* if

- every regular element of A is contained in only finitely many maximal ideals (*finite character*)
- every regular prime ideal of A is contained in a unique maximal ideal.

Theorem 1

- **1** Every \mathcal{P} -regular element of A has finite character in A.
- Every *P*-regular prime ideal of *A* is contained in a unique maximal ideal of *A*.

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB

A ring A is said to be *h*-local if

- every regular element of A is contained in only finitely many maximal ideals (*finite character*)
- every regular prime ideal of A is contained in a unique maximal ideal.

Theorem 1

- **1** Every \mathcal{P} -regular element of A has finite character in A.
- **2** Every \mathcal{P} -regular prime ideal of A is contained in a unique maximal ideal of A.
- So For every *P*-regular prime ideal *P* ∈ Spec(*A*), *P*_α ⊈ *P* for all *P*_α ∈ *P*.

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \text{Properties in} \\ \text{A+B and} \\ \text{A+QB Rings} \end{array}$

h-local in A+B and A+QB

A ring A is said to be *h*-local if

- every regular element of A is contained in only finitely many maximal ideals (*finite character*)
- every regular prime ideal of A is contained in a unique maximal ideal.

Theorem 1

- **1** Every \mathcal{P} -regular element of A has finite character in A.
- **2** Every \mathcal{P} -regular prime ideal of A is contained in a unique maximal ideal of A.
- So For every *P*-regular prime ideal *P* ∈ Spec(*A*), *P*_α ∉ *P* for all *P*_α ∈ *P*.
- $④ \ A/P_{\alpha} \text{ is h-local for all } P_{\alpha} \in \mathcal{P}.$

h-local (cont.) Properties in A+B Rings Alexandra Epstein Theorem 2 Let S = A + QB. A+B and A+QB Properties in A+B and A+QB Rings

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

h-local (cont.)

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB

Theorem 2

Let S = A + QB. S is h-local if and only if each \mathcal{P} -regular element of A has finite character and each \mathcal{P} -regular prime ideal of A is contained in a unique maximal ideal of A.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Note that this is just (1) and (2) from Theorem 1.

h-local (cont.)

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB

Theorem 2

Let S = A + QB. S is h-local if and only if each \mathcal{P} -regular element of A has finite character and each \mathcal{P} -regular prime ideal of A is contained in a unique maximal ideal of A.

Note that this is just (1) and (2) from Theorem 1.

 $M_i \in Max(A + QB) \longrightarrow$ exclude (3) $(A + QB)e_i \cong Q(A/P_i)$ a field (so h-local) \longrightarrow exclude (4)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

\Rightarrow (contrapositive)

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

\Rightarrow (contrapositive)

1 or 2 fails:

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

\Rightarrow (contrapositive)

() or **(**) fails: As the prime ideals of A correspond to the prime ideals of R containing B, it follows R is not h-local.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB

\Rightarrow (contrapositive)

() or **(**) fails: As the prime ideals of A correspond to the prime ideals of R containing B, it follows R is not h-local.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

6 fails:

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB

\Rightarrow (contrapositive)

() or **(**) fails: As the prime ideals of A correspond to the prime ideals of R containing B, it follows R is not h-local.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

③ fails: There exists Q ⊆ Spec(A) *P*-regular properly containing some $P_α ∈ P$.

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

\Rightarrow (contrapositive)

() or **(**) fails: As the prime ideals of A correspond to the prime ideals of R containing B, it follows R is not h-local.

③ fails: There exists $Q \subseteq \text{Spec}(A)$ *P*-regular properly containing some $P_{\alpha} \in \mathcal{P}$. Note $Q \subseteq N \in \text{Max}(A)$. For $a \in Q$ *P*-regular, $a \in R$ regular contained in $N + M_i$ with $i = (\alpha, n) \in \mathcal{I}$ for all $n \in \mathbb{N}$; *R* is not h-local.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

\Rightarrow (contrapositive)

() or **(**) fails: As the prime ideals of A correspond to the prime ideals of R containing B, it follows R is not h-local.

(6) fails: There exists $Q \subseteq \text{Spec}(A)$ *P*-regular properly containing some $P_{\alpha} \in \mathcal{P}$. Note $Q \subseteq N \in \text{Max}(A)$. For $a \in Q$ *P*-regular, $a \in R$ regular contained in $N + M_i$ with $i = (\alpha, n) \in \mathcal{I}$ for all $n \in \mathbb{N}$; *R* is not h-local.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

4 fails:

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

\Rightarrow (contrapositive)

() or **(**) fails: As the prime ideals of A correspond to the prime ideals of R containing B, it follows R is not h-local.

③ fails: There exists $Q \subseteq \text{Spec}(A)$ *P*-regular properly containing some $P_{\alpha} \in \mathcal{P}$. Note $Q \subseteq N \in \text{Max}(A)$. For $a \in Q$ *P*-regular, $a \in R$ regular contained in $N + M_i$ with $i = (\alpha, n) \in \mathcal{I}$ for all $n \in \mathbb{N}$; *R* is not h-local.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

④ fails: If, for some $P_{\alpha} \in \mathcal{P}$, $a + P_{\alpha} \in A/P_{\alpha}$ nonzero and contained in $N_k/P_{\alpha} \in Max(A/P_{\alpha})$, $k \in K$ (K infinite),

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

\Rightarrow (contrapositive)

() or **(**) fails: As the prime ideals of A correspond to the prime ideals of R containing B, it follows R is not h-local.

③ fails: There exists $Q \subseteq \text{Spec}(A)$ *P*-regular properly containing some $P_{\alpha} \in \mathcal{P}$. Note $Q \subseteq N \in \text{Max}(A)$. For $a \in Q$ *P*-regular, $a \in R$ regular contained in $N + M_i$ with $i = (\alpha, n) \in \mathcal{I}$ for all $n \in \mathbb{N}$; *R* is not h-local.

@ fails: If, for some $P_{\alpha} \in \mathcal{P}$, $a + P_{\alpha} \in A/P_{\alpha}$ nonzero and contained in $N_k/P_{\alpha} \in Max(A/P_{\alpha})$, $k \in K$ (K infinite), then for $i = (\alpha, 1) \in \mathcal{I}$, $1 + e_i(a - 1) \in R$ is regular and contained in $N_k + M_i \in Max(R)$, $\forall k \in K$; so R is not h-local.

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \text{Properties in} \\ \text{A+B and} \\ \text{A+QB Rings} \end{array}$

h-local in A+B and A+QB

\Rightarrow (contrapositive)

() or **(**) fails: As the prime ideals of A correspond to the prime ideals of R containing B, it follows R is not h-local.

③ fails: There exists $Q \subseteq \text{Spec}(A)$ *P*-regular properly containing some $P_{\alpha} \in \mathcal{P}$. Note $Q \subseteq N \in \text{Max}(A)$. For $a \in Q$ *P*-regular, $a \in R$ regular contained in $N + M_i$ with $i = (\alpha, n) \in \mathcal{I}$ for all $n \in \mathbb{N}$; *R* is not h-local.

(a) fails: If, for some $P_{\alpha} \in \mathcal{P}$, $a + P_{\alpha} \in A/P_{\alpha}$ nonzero and contained in $N_k/P_{\alpha} \in Max(A/P_{\alpha})$, $k \in K$ (K infinite), then for $i = (\alpha, 1) \in \mathcal{I}$, $1 + e_i(a - 1) \in R$ is regular and contained in $N_k + M_i \in Max(R)$, $\forall k \in K$; so R is not h-local. (Similar argument if $Q/P_{\alpha} \in Spec(A/P_{\alpha})$ is a nonzero contained in more than one maximal ideal of A/P_{α} .)

	Proof of Theorem 1 (cont.)
Properties in A+B Rings	\
Alexandra Epstein	
Introduction	
Definitions	
A+B and A+QB Construction	
Properties in A+B and A+QB Rings	
h-local in A+B and A+QB	

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

 $\begin{array}{c} {\sf Properties \ in} \\ {\sf A}{+}{\sf B} \ {\sf Rings} \end{array}$

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB \Leftarrow

If $a + b \in R$ regular then 1 implies a + b contained in only finitely many maximal ideals of R containing B.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Properties in A+B Rings

 \Leftarrow

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB If $a + b \in R$ regular then **1** implies a + b contained in only finitely many maximal ideals of R containing B. **3** guarantees that $a \in R$ is not contained in any maximal ideals of R which do not contain B.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Properties in A+B Rings

 \Leftarrow

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Constructio

Properties in A+B and A+QB Rings

h-local in A+B and A+QB If $a + b \in R$ regular then (1) implies a + b contained in only finitely many maximal ideals of R containing B. (3) guarantees that $a \in R$ is not contained in any maximal ideals of R which do not contain B. (4) implies that a + b is contained in finitely many maximal ideals containing M_i for each $i \in \mathcal{I}$ such that $b(i) \neq 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Properties in A+B Rings

 \Leftarrow

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB If $a + b \in R$ regular then (1) implies a + b contained in only finitely many maximal ideals of R containing B. (3) guarantees that $a \in R$ is not contained in any maximal ideals of R which do not contain B. (4) implies that a + b is contained in finitely many maximal ideals containing M_i for each $i \in \mathcal{I}$ such that $b(i) \neq 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Ø implies that if $Q + B \in \text{Spec}(R)$ is regular,

Properties in A+B Rings

 \Leftarrow

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB If $a + b \in R$ regular then (1) implies a + b contained in only finitely many maximal ideals of R containing B. (3) guarantees that $a \in R$ is not contained in any maximal ideals of R which do not contain B. (2) implies that a + b is contained in finitely many maximal ideals containing M_i for each $i \in \mathcal{I}$ such that $b(i) \neq 0$.

② implies that if $Q + B \in \text{Spec}(R)$ is regular, then it is contained in a unique maximal ideal of R, which has the form N + B with $Q \subseteq N \in \text{Max}(A)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Properties in A+B Rings

 \Leftarrow

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB If $a + b \in R$ regular then (1) implies a + b contained in only finitely many maximal ideals of R containing B. (3) guarantees that $a \in R$ is not contained in any maximal ideals of R which do not contain B. (4) implies that a + b is contained in finitely many maximal ideals containing M_i for each $i \in \mathcal{I}$ such that $b(i) \neq 0$.

② implies that if $Q + B \in \text{Spec}(R)$ is regular, then it is contained in a unique maximal ideal of R, which has the form N + B with $Q \subseteq N \in \text{Max}(A)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

4 implies that if $Q + M_i \in \text{Spec}(R)$ is regular

Properties in A+B Rings

 \Leftarrow

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB If $a + b \in R$ regular then (1) implies a + b contained in only finitely many maximal ideals of R containing B. (3) guarantees that $a \in R$ is not contained in any maximal ideals of R which do not contain B. (2) implies that a + b is contained in finitely many maximal ideals containing M_i for each $i \in \mathcal{I}$ such that $b(i) \neq 0$.

② implies that if $Q + B \in \text{Spec}(R)$ is regular, then it is contained in a unique maximal ideal of R, which has the form N + B with $Q \subseteq N \in \text{Max}(A)$.

④ implies that if $Q + M_i \in \operatorname{Spec}(R)$ is regular for some $i \in \mathcal{I}$, then it is contained in a unique maximal ideal of R, which has the form $N + M_i$ with $Q/P_i \subseteq N/P_i \in \operatorname{Max}(A/P_i)$.

Independence of conditions

Properties in A+B Rings

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB

- **1** Every \mathcal{P} -regular element of A has finite character in A.
- Every *P*-regular prime ideal of *A* is contained in a unique maximal ideal of *A*.
- So For every *P*-regular prime ideal *P* ∈ Spec(*A*), *P*_α ⊈ *P* for all *P*_α ∈ *P*.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $④ \ A/P_{\alpha} \text{ is h-local for all } P_{\alpha} \in \mathcal{P}.$

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB

- **1** Every \mathcal{P} -regular element of A has finite character in A.
- Every *P*-regular prime ideal of *A* is contained in a unique maximal ideal of *A*.
- So For every *P*-regular prime ideal *P* ∈ Spec(*A*), *P*_α ∉ *P* for all *P*_α ∈ *P*.
- $④ \ A/P_{\alpha} \text{ is h-local for all } P_{\alpha} \in \mathcal{P}.$

We give examples to show that these conditions are independent of each other, and thus all are required for Theorem 1.

For each example, we give a ring A and set of primes $\mathcal{P} \subseteq \operatorname{Spec}(A)$ which will satisfy the stated conditions.

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB

- **1** Every \mathcal{P} -regular element of A has finite character in A.
- Every *P*-regular prime ideal of *A* is contained in a unique maximal ideal of *A*.
- So For every *P*-regular prime ideal *P* ∈ Spec(*A*), *P*_α ∉ *P* for all *P*_α ∈ *P*.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $④ \ A/P_{\alpha} \text{ is h-local for all } P_{\alpha} \in \mathcal{P}.$

Example 1: only (1) fails

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB

- **1** Every \mathcal{P} -regular element of A has finite character in A.
- Every *P*-regular prime ideal of *A* is contained in a unique maximal ideal of *A*.
- So For every *P*-regular prime ideal *P* ∈ Spec(*A*), *P*_α ∉ *P* for all *P*_α ∈ *P*.

Example 1: only (1) fails

Let $\beta \mathbb{N}$ be the Stone-Čech compactification of \mathbb{N} and take $A = C(\beta \mathbb{N})$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB

- **1** Every \mathcal{P} -regular element of A has finite character in A.
- Every *P*-regular prime ideal of *A* is contained in a unique maximal ideal of *A*.
- So For every *P*-regular prime ideal *P* ∈ Spec(*A*), *P*_α ∉ *P* for all *P*_α ∈ *P*.
- $④ \ A/P_{\alpha} \text{ is h-local for all } P_{\alpha} \in \mathcal{P}.$

Example 1: only (1) fails

Let $\beta \mathbb{N}$ be the Stone-Čech compactification of \mathbb{N} and take $A = C(\beta \mathbb{N})$. For each $p \in \beta \mathbb{N}$, $M_p = \{f \in C(\beta \mathbb{N}) \mid f(p) = 0\} \in Max(A)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB

- **1** Every \mathcal{P} -regular element of A has finite character in A.
- Every *P*-regular prime ideal of *A* is contained in a unique maximal ideal of *A*.
- So For every *P*-regular prime ideal *P* ∈ Spec(*A*), *P*_α ∉ *P* for all *P*_α ∈ *P*.

Example 1: only (1) fails

Let $\beta \mathbb{N}$ be the Stone-Čech compactification of \mathbb{N} and take $A = C(\beta \mathbb{N})$. For each $p \in \beta \mathbb{N}$, $M_p = \{f \in C(\beta \mathbb{N}) \mid f(p) = 0\} \in Max(A)$. Take $\mathcal{P} = \{M_p \in Max(A) \mid p \in \mathbb{N}\}.$

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB

- **1** Every \mathcal{P} -regular element of A has finite character in A.
- Every *P*-regular prime ideal of *A* is contained in a unique maximal ideal of *A*.
- So For every *P*-regular prime ideal *P* ∈ Spec(*A*), *P*_α ∉ *P* for all *P*_α ∈ *P*.

Example 1: only (1) fails

Let $\beta \mathbb{N}$ be the Stone-Čech compactification of \mathbb{N} and take $A = C(\beta \mathbb{N})$. For each $p \in \beta \mathbb{N}$, $M_p = \{f \in C(\beta \mathbb{N}) \mid f(p) = 0\} \in Max(A)$. Take $\mathcal{P} = \{M_p \in Max(A) \mid p \in \mathbb{N}\}.$

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB

- 1) Every \mathcal{P} -regular element of A has finite character in A.
- Every *P*-regular prime ideal of *A* is contained in a unique maximal ideal of *A*.
- So For every *P*-regular prime ideal *P* ∈ Spec(*A*), *P*_α ∉ *P* for all *P*_α ∈ *P*.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $④ \ A/P_{\alpha} \text{ is h-local for all } P_{\alpha} \in \mathcal{P}.$

Example 2: only (2) fails

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

- 1) Every \mathcal{P} -regular element of A has finite character in A.
- Every *P*-regular prime ideal of *A* is contained in a unique maximal ideal of *A*.
- So For every *P*-regular prime ideal *P* ∈ Spec(*A*), *P*_α ∉ *P* for all *P*_α ∈ *P*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 $④ \ A/P_{\alpha} \text{ is h-local for all } P_{\alpha} \in \mathcal{P}.$

Example 2: only (2) fails

Let $D = T^{-1}K[X, Y]$ where $T = K[X, Y] \setminus ((X, Y) \cup (X, Y - 1)).$

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

- **1** Every \mathcal{P} -regular element of A has finite character in A.
- Every *P*-regular prime ideal of *A* is contained in a unique maximal ideal of *A*.
- So For every *P*-regular prime ideal *P* ∈ Spec(*A*), *P*_α ∉ *P* for all *P*_α ∈ *P*.
- $④ \ A/P_{\alpha} \text{ is h-local for all } P_{\alpha} \in \mathcal{P}.$

Example 2: only (2) fails

Let $D = T^{-1}K[X, Y]$ where $T = K[X, Y] \setminus ((X, Y) \cup (X, Y - 1))$. Take A = A' + QB'where $A' = D \times D$ and $\mathcal{P}' = \{D \times (0), (0) \times D\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \text{Properties in} \\ \text{A+B and} \\ \text{A+QB Rings} \end{array}$

h-local in A+B and A+QB

- **1** Every \mathcal{P} -regular element of A has finite character in A.
- Every *P*-regular prime ideal of *A* is contained in a unique maximal ideal of *A*.
- So For every *P*-regular prime ideal *P* ∈ Spec(*A*), *P*_α ∉ *P* for all *P*_α ∈ *P*.
- $④ \ A/P_{\alpha} \text{ is h-local for all } P_{\alpha} \in \mathcal{P}.$

Example 2: only (2) fails

Let $D = T^{-1}K[X, Y]$ where $T = K[X, Y] \setminus ((X, Y) \cup (X, Y - 1))$. Take A = A' + QB'where $A' = D \times D$ and $\mathcal{P}' = \{D \times (0), (0) \times D\}$. Then take $\mathcal{P} = \{M'_i \mid i \in \mathcal{I}'\}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB

- 1) Every \mathcal{P} -regular element of A has finite character in A.
- Every *P*-regular prime ideal of *A* is contained in a unique maximal ideal of *A*.
- So For every *P*-regular prime ideal *P* ∈ Spec(*A*), *P*_α ∉ *P* for all *P*_α ∈ *P*.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $④ \ A/P_{\alpha} \text{ is h-local for all } P_{\alpha} \in \mathcal{P}.$

Example 3: only (3) fails

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

- 1) Every \mathcal{P} -regular element of A has finite character in A.
- Every *P*-regular prime ideal of *A* is contained in a unique maximal ideal of *A*.
- So For every *P*-regular prime ideal *P* ∈ Spec(*A*), *P*_α ∉ *P* for all *P*_α ∈ *P*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $④ \ A/P_{\alpha} \text{ is h-local for all } P_{\alpha} \in \mathcal{P}.$

Example 3: only (3) fails

Let $A = K[X, Y]_{(X,Y)}$, the localization of K[X, Y] at the maximal ideal (X, Y)

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \text{Properties in} \\ \text{A+B and} \\ \text{A+QB Rings} \end{array}$

h-local in A+B and A+QB

- 1) Every \mathcal{P} -regular element of A has finite character in A.
- Every *P*-regular prime ideal of *A* is contained in a unique maximal ideal of *A*.
- So For every *P*-regular prime ideal *P* ∈ Spec(*A*), *P*_α ∉ *P* for all *P*_α ∈ *P*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $④ \ A/P_{\alpha} \text{ is h-local for all } P_{\alpha} \in \mathcal{P}.$

Example 3: only (3) fails

Let $A = K[X, Y]_{(X,Y)}$, the localization of K[X, Y] at the maximal ideal (X, Y) and $\mathcal{P} = \{\text{nonzero principal prime ideals of } A\} \setminus (X)A$.

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \text{Properties in} \\ \text{A+B and} \\ \text{A+QB Rings} \end{array}$

h-local in A+B and A+QB

- 1) Every \mathcal{P} -regular element of A has finite character in A.
- Every *P*-regular prime ideal of *A* is contained in a unique maximal ideal of *A*.
- So For every *P*-regular prime ideal *P* ∈ Spec(*A*), *P*_α ∉ *P* for all *P*_α ∈ *P*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $④ \ A/P_{\alpha} \text{ is h-local for all } P_{\alpha} \in \mathcal{P}.$

Example 3: only (3) fails

Let $A = K[X, Y]_{(X,Y)}$, the localization of K[X, Y] at the maximal ideal (X, Y) and $\mathcal{P} = \{\text{nonzero principal prime ideals of } A\} \setminus (X)A$.

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \mbox{Properties in} \\ \mbox{A+B and} \\ \mbox{A+QB Rings} \end{array}$

h-local in A+B and A+QB

- 1) Every \mathcal{P} -regular element of A has finite character in A.
- Every *P*-regular prime ideal of *A* is contained in a unique maximal ideal of *A*.
- So For every *P*-regular prime ideal *P* ∈ Spec(*A*), *P*_α ∉ *P* for all *P*_α ∈ *P*.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $④ \ A/P_{\alpha} \text{ is h-local for all } P_{\alpha} \in \mathcal{P}.$

Example 4: only (4) fails

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \text{Properties in} \\ \text{A+B and} \\ \text{A+QB Rings} \end{array}$

h-local in A+B and A+QB

- **1** Every \mathcal{P} -regular element of A has finite character in A.
- Every *P*-regular prime ideal of *A* is contained in a unique maximal ideal of *A*.
- So For every *P*-regular prime ideal *P* ∈ Spec(*A*), *P*_α ∉ *P* for all *P*_α ∈ *P*.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $④ \ A/P_{\alpha} \text{ is h-local for all } P_{\alpha} \in \mathcal{P}.$

Example 4: only (4) fails

Let A = K[X, Y, Z] and

 $\mathcal{P} = \{$ nonzero principal prime ideals of $A\}.$

h-local between A, R, and S

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

イロト 不得 トイヨト イヨト

э

Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

(ロ)、(型)、(E)、(E)、(E)、(O)

S h-local

≁

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

Properties in A+B and A+QB Rings

h-local in A+B and A+QB

Thank you for listening!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

References

Properties in A+B Rings

> Alexandra Epstein

Introduction

Definitions

A+B and A+QB Construction

 $\begin{array}{l} \text{Properties in} \\ \text{A+B and} \\ \text{A+QB Rings} \end{array}$

h-local in A+B and A+QB

- A.R. Aliabad and R. Mohamadian. On sz°-ideals in polynomial rings. *Communications in Algebra*, 39:701–717, 2011.
- M. Griffin. Valuations and prufer rings. Canadian Journal of Mathematics, 26(2):412–429, 1974.
- J. Huckaba. *Commutative Rings with Zero Divisors*. Chapman & Hall Pure and Applied Mathematics. Taylor & Francis, 1988.
- T. Lucas. Weakly additively regular rings and special families of prime ideals. *Palestine Journal of Mathematics*, 7(1):14–31, 2018.
- T. Lucas. *Strongly Additively Regular Rings and Graphs*, pages 113–134 .Birkhauser Singapore, 04 2019.
- A. Omairi. *H-Local Rings*. PhD thesis, Florida Atlantic University, 2019
- S. Safaeeyan and A. Taherifar. d-ideals, fd-ideals and prime ideals. *Quaestiones Mathematicae*. 42(6):717-732, 2019. Taylor & Francis.