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Why Algebra in Software Engineering?

API Design Composability

Abstraction Correctness

Coming up: Loads of examples!



Designing with
algebraic structure
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What is an algebraic structure?

Types

S

Operations Axioms

a ✱ (b ✱ c) = (a ✱ b) ✱ c
1 ✱ a = a
a ✱ 1 = a

✱
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S

S
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Example: Regular expressions

Types

● Alphabet (A)
● Expressions (E)

Operations

● nothing : E
● empty : E
● literal : A → E
● concatenation : E × E → E
● alternation : E × E → E
● Kleene star : E → E

Axioms

● Associativities
● Identities
● Commutativity of alt.
● Idempotence of alt.
● Distributivity
● Annihilation
● Inclusion axioms for 

Kleene star



Examples: Codd’s Relational Algebra

Types

● Labeled n-ary Relations
● Primitive Types

Operations

● union, difference, product
● projection, selection
● rename
● natural join
● equijoin
● semijoin
● antijoin
● division

Axioms

● Idempotence of selection
● Selection distributes of 

difference, intersection, 
and union

● etc. (there are lots!)



Examples: Semigroup Compression

Types

● Alphabet: A
● Compression Tokens: T

Operations

● len : T → ℕ
● solo : A → T
● popHead : T → A × List(T)
● popTail : T → List(T) × A
● tryMerge : T × T → Optional(T)
● split : T × ℕ → List(T) × List(T)

Axioms

● len(solo(x)) = 1
● popHead(solo(x)) = (x, [ ])
● popTail(solo(x)) = ([ ], x)
● When tryMerge succeeds:

○ It is associative
○ len(tryMerge(a, b)) = 

len(a) + len(b)
● More axioms for split…



Examples: Mock Tests

Types: Plan, Call

empty : Plan
call : Call -> Plan
⧺ : Plan × Plan -> Plan
∥ : Plan × Plan -> Plan
+ : Plan × Plan -> Plan

consec : Plan -> Plan
consec(p) = empty + p ⧺ consec(p)

multi : Plan -> Plan
multi(p) = empty + p ∥ multi(p)

See Svenningsson J., Svensson H., Smallbone 
N., Arts T., Norell U., Hughes J. (2014) An 
Expressive Semantics of Mocking. In: Gnesi S., 
Rensink A. (eds) Fundamental Approaches to 
Software Engineering. FASE 2014. Lecture 
Notes in Computer Science, vol 8411. Springer, 
Berlin, Heidelberg. 
https://doi.org/10.1007/978-3-642-54804-8_27



Equational Theories: Pictures

Type: Picture

solidCircle : ℝ → Picture
solidRectangle : ℝ × ℝ → Picture
translated : Picture × ℝ × ℝ → Picture

◇ : Picture × Picture → Picture

trans(a ◇ b, x, y)
  = trans(a, x, y) ◇ trans(b, x, y)

trans(trans(a, x1, y1), x2, y2)
  = trans(a, x1 + x2, y1 + y2)

Live Demo



Benefits of Equational Theories

● Promotes confident refactoring

● Enables property testing

● Enables developer tooling

● Enables abstraction

● Encourages high-quality API design.

○ Operations are total and closed.

○ Properties like associativity, distributivity, 
idempotence, identities tend to appear.

○ Homomorphisms occur naturally.



APIs are algebraic 
structures.

(but we often neglect the axioms)

Concrete implementations are instances of those 
algebraic structures.



Programming with standard 
algebraic structures
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Standard algebraic structures

Sometimes, the algebraic structures we need are already well-understood:

● Monoids and semigroups are all over the place!
● Semirings and lattices are also common.
● Several earlier examples exhibited monoid/semigroup structure:

○ Regular expressions are monoids under concatenation and alternation.
○ Compression was a partial semigroup under tryMerge.
○ Pictures are monoids under ◇.

● Groups, rings, and other structures with inverses are less common.



Abstracting over a structure

● Choose your own implementation of the structure!

● Goes by different names in different languages:
○ Bounded Type Parameters (Java)
○ Concepts (C++)
○ Type Classes (Haskell, PureScript)
○ Traits (Scala, Rust)

● Allows for very powerful abstraction boundaries.



Monoids

Abstractly: a set with an associative binary operation having an identity.

Concretely: a summary for lists that splits over list concatenation.

● Examples: sum, count, minimum, maximum, first, last, gcd, etc.
● Non-examples: mean, median

Many applications:

● Parallel and distributed algorithms
● Streaming and incremental computation



Balanced Trees

a b c d e f g h

Sequences

Priority Queues

Interval Sets

Maps and Sets

Range Queries

Efficient insert, delete, split, 
concatenate, lookup, etc.



The Trick: Cache a summary in each node

Sequences: Cache the number of elements

Priority Queue: Cache the max element

Interval Sets: Cache the smallest containing element

Maps and Sets: Cache the max key

Range Queries: Cache the min and max elements

Associativity guarantees that rebalancing a subtree doesn’t change its summary.

Monoidal 
summaries



Swappable tree structure

a b c d e f g h

Binary tree 2-3 Finger Tree



Implementations

● fj.data.fingertrees.FingerTree (Java)
● ttftree.Tree (Python)
● fingertrees::FingerTree (Rust)
● Data.FingerTree (Haskell)
● data.finger-tree (Clojure)



Algebraic structure
can be abstracted over.

When the structure is very general, one can define 
very powerful APIs in this way.



Algebraic data types and the 
semiring of types
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Operations on Sets/Types

Sum

A + B = {x1 | x ∊ A} ∪ {x2 | x ∊ B}

Also known as:

● Disjoint union
● Tagged unions
● std::variant
● Enums in Scala 3, Rust, 

Swift, and more
● Subclasses

Product

A × B = {(x, y) | x ∊ A, y ∊ B}

Also known as:

● Tuples
● Pairs
● Records
● Structs

Exponent

AB = {f | f : B → A }

Also known as:

● Functions
● Total Maps



The semiring of types

A + B ≅ B + A
(A + B) + C ≅ A + (B + C)
A + 0 ≅ 0 + A ≅ A

A × B ≅ B × A
(A × B) × C ≅ A × (B × C)
A × 1 ≅ 1 × A ≅ A

A × (B + C) ≅ A × B + A × C

(AB)C ≅ AB × C

AB + C ≅ AB × AC

A1 ≅ A

Types in a programming language form a 
semiring with exponentiation…

● Up to type isomorphism…
● In the category of types and computable 

functions.



Type variables and parametricity

● A data structure can be defined as a type parameterized by one or more 
simpler types.

● Often called generics or templates when implemented in a language.

● In this case, a function being computable carries a lot of weight.
● Parameter types must be handled in a formulaic way.
● This restriction is useful: it’s known as the parametricity theorem!



Metaprogramming and the semiring

● Algebraic types are definable with only products, sums, and fixpoints.

● Key result: by defining what should be done with products and sums, we 
can define a function on arbitrary algebraic types.

● (Optionally, handle exponents as well.)

● Metaprogramming facilities depend on programming language.



Example: Enumerating values of a type

enumerate(A + B) = enumerate(A) ∪ enumerate(B)

enumerate(A × B) = { (x, y) | x ∊ enumerate(A), y ∊ enumerate(B) }



Example: Poking Holes in Data Structures

If T is a type, let DX(T) be the type of data structures with one missing value of 
type X.

● DX(C) = 0 (when X doesn’t occur in C)
● DX(X) = 1
● DX(U + V) = DX(U) + DX(V)
● DX(U × V) = U × DX(V) + DX(U) × V
● DX(F(G(X)) = DG(X)F(G(X)) × DXG(X)



Example: Tries

A trie T(K, V) is an efficient map from K to V whose structure is dictated by K.

● T(1, V) = V + 1
● T(A + B, V) = T(A, V) × T(B, V)
● T(A × B, V) = T(A, T(B, V))



Types have algebraic 
structure.

We can exploit this structure for metaprogramming.



Categorical structure in software
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Categories

● Objects
● Morphisms
● Identities
● Associative Composition

Category of Types
● Types
● Computable functions
● f(x) = x
● (g ∘ f)(x) = g(f(x))



Functors

● f : A → B
● map(f) : T(A) → T(B)

● Examples:
○ Lists or other data structures
○ Optional values
○ Placeholders for future values (promises, lazy computations, etc.)



Monoidal / Applicative Functors

● f : A × B → C
● map(f) : T(A × B) -> T(C)
● map2(f) : T(A) × T(B) → T(C)

● Monoidal form: zip : T(A) × T(B) → T(A × B)
● Applicative form: ap : T(CB) → T(C)T(B)

○ Recall: CA × B ≅ (CB)A

● Most commonly used functors are applicative, but not always uniquely.



Monads and Kleisli Categories

● f : A →T B aka, A → T(B)
● g : B →T C aka, B → T(C)
● g ∘T f : A →T C aka, A → T(C)
● idX,T : X →T X aka, X → T(X)

● Theorem: T is a monad, and Kleisli categories are in 1-to-1 correspondence 
with monads.

● Applications: too many to type!



More Functor Structures

Traversable Functors

● Assume F is another applicative functor.

● traverse : F(B)A → F(T(B))T(A)

● sequence : T(F(A)) → F(T(A))

● Examples: Any data structure

Alternative Functors

● T is an applicative functor.  Additionally:

● empty : T(A)
● ⋎ : T(A) × T(A) → T(A)

● Examples: Optional, Parsers, anything 
nondeterminism or recoverable failure



Example: Interpreters via Free Structures

Given a functor F (algebraic data type with a 
type param) that defines desired operations:

● Add : A × A → A
● Negate : A → A
● Scale : ℝ × A → A

The free monad generated by F defines a monad 
structure:

● Expr = Free(F)

If F is a functor, an F-algebra maps F(X) → X.

eval : F(ℝ) → ℝ
eval(Add(x, y)) = x + y
eval(Negate(x)) = -x
eval(Scale(k, x)) = x

An F-algebra defines an interpreter for the free 
monad.

interpret(eval) : ℝA → ℝExpr(A)



Example: Compiling to Categories

There is a canonical embedding of lambda 
calculus in any Cartesian Closed Category.

Idea: (Conal Elliot)

● Compile a programming language to 
categorical expressions

● Abstracted over the choice of category!
● Choose a category that works for the 

desired application.

Examples:

● Extract data flow graphs from programs.
● Convert rich programming languages to 

custom hardware.
● Automatic differentiation
● Incremental evaluation
● Reasoning about programs with constraint 

solvers (e.g., SMT)



Categories abstract 
function-like ideas.

Standard categorical structures are often applicable 
to programming problems.



Questions / Discussion
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