Applications of Algebra to Software Engineering

Chris Smith Software Engineer, Groq, Inc.

Why Algebra in Software Engineering?

API Design

Composability

Abstraction

Correctness

Coming up: Loads of examples!

1

Designing with algebraic structure

What is an algebraic structure?

Example: Regular expressions

Types

- Alphabet (A)
- Expressions (E)

Operations

- nothing : E
- empty : E
- literal : $A \rightarrow E$
- concatenation : $E \times E \rightarrow E$
- alternation : $E \times E \rightarrow E$
- Kleene star : $E \rightarrow E$

Axioms

- Associativities
- Identities
- Commutativity of alt.
- Idempotence of alt.
- Distributivity
- Annihilation
- Inclusion axioms for Kleene star

Examples: Codd's Relational Algebra

Types

- Labeled n-ary Relations
- Primitive Types

Operations

- union, difference, product
- projection, selection
- rename
- natural join
- equijoin
- semijoin
- antijoin
- division

Axioms

- Idempotence of selection
- Selection distributes of difference, intersection, and union
- etc. (there are lots!)

Examples: Semigroup Compression

Types

- Alphabet: A
- Compression Tokens: T

Operations

- len : $T \to \mathbb{N}$
- $\bullet \quad \text{ solo : } \mathsf{A} \to \mathsf{T}$
- popHead : $T \rightarrow A \times List(T)$
- popTail : $T \rightarrow List(T) \times A$
- tryMerge : $T \times T \rightarrow Optional(T)$
- split : $T \times \mathbb{N} \rightarrow \text{List}(T) \times \text{List}(T)$

Axioms

- len(solo(x)) = 1
- popHead(solo(x)) = (x, [])
- popTail(solo(x)) = ([], x)
- When tryMerge succeeds:
 - It is associative
 - len(tryMerge(a, b)) =
 len(a) + len(b)
- More axioms for split...

Examples: Mock Tests

Types: Plan, Call

```
empty : Plan
call : Call -> Plan
# : Plan × Plan -> Plan
// : Plan × Plan -> Plan
+ : Plan × Plan -> Plan
consec : Plan -> Plan
consec(p) = empty + p # consec(p)
multi : Plan -> Plan
multi(p) = empty + p // multi(p)
```

See Svenningsson J., Svensson H., Smallbone N., Arts T., Norell U., Hughes J. (2014) *An Expressive Semantics of Mocking*. In: Gnesi S., Rensink A. (eds) Fundamental Approaches to Software Engineering. FASE 2014. Lecture Notes in Computer Science, vol 8411. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54804-8_27

Equational Theories: Pictures

Type: Picture

solidCircle : $\mathbb{R} \rightarrow \text{Picture}$ solidRectangle : $\mathbb{R} \times \mathbb{R} \rightarrow \text{Picture}$ translated : Picture $\times \mathbb{R} \times \mathbb{R} \rightarrow \text{Picture}$

 \diamond : Picture × Picture \rightarrow Picture

trans(a \diamond b, x, y) = trans(a, x, y) \diamond trans(b, x, y)

trans(trans(a,
$$x_1, y_1$$
), x_2, y_2)
= trans(a, $x_1 + x_2, y_1 + y_2$)

Live Demo

Benefits of Equational Theories

- Promotes confident refactoring
- Enables property testing
- Enables developer tooling
- Enables abstraction

- Encourages high-quality API design.
 - Operations are total and closed.
 - Properties like associativity, distributivity, idempotence, identities tend to appear.
 - Homomorphisms occur naturally.

APIS are algebraic structures. (but we often neglect the axioms)

Concrete implementations are instances of those algebraic structures.

Programming with standard algebraic structures

Standard algebraic structures

Sometimes, the algebraic structures we need are already well-understood:

- Monoids and semigroups are all over the place!
- Semirings and lattices are also common.
- Several earlier examples exhibited monoid/semigroup structure:
 - Regular expressions are monoids under concatenation and alternation.
 - Compression was a partial semigroup under tryMerge.
 - Pictures are monoids under \diamondsuit .
- Groups, rings, and other structures with inverses are less common.

Abstracting over a structure

- Choose your own implementation of the structure!
- Goes by different names in different languages:
 - Bounded Type Parameters (Java)
 - Concepts (C++)
 - Type Classes (Haskell, PureScript)
 - Traits (Scala, Rust)
- Allows for very powerful abstraction boundaries.

Monoids

Abstractly: a set with an associative binary operation having an identity.

Concretely: a summary for lists that splits over list concatenation.

- Examples: sum, count, minimum, maximum, first, last, gcd, etc.
- Non-examples: mean, median

Many applications:

- Parallel and distributed algorithms
- Streaming and incremental computation

Balanced Trees

Sequences Priority Queues Interval Sets Maps and Sets Range Queries

Efficient insert, delete, split, concatenate, lookup, etc.

The Trick: Cache a summary in each node

Sequences: Cache the number of elements Priority Queue: Cache the max element Interval Sets: Cache the smallest containing element Maps and Sets: Cache the max key Range Queries: Cache the min and max elements

Associativity guarantees that rebalancing a subtree doesn't change its summary.

Swappable tree structure

Implementations

- <u>fj.data.fingertrees.FingerTree</u> (Java)
- <u>ttftree.Tree</u> (Python)
- <u>fingertrees::FingerTree</u> (Rust)
- <u>Data.FingerTree</u> (Haskell)
- <u>data.finger-tree</u> (Clojure)

Algebraic structure can be abstracted over.

When the structure is very general, one can define very powerful APIs in this way.

Algebraic data types and the semiring of types

Operations on Sets/Types

Sum	Product	Expone
A + B = $\{x_1 x \in A\} \cup \{x_2 x \in B\}$	$A \times B = \{(x, y) \mid x \in A, y \in B\}$	$A^B = \{f \mid f : B \to A \}$
Also known as:	Also known as:	Also known as:
 Disjoint union Tagged unions std::variant Enums in Scala 3, Rust, 	 Tuples Pairs Records Structs 	FunctionsTotal Maps

Subclasses

Swift, and more

Α

Silucia

ent

The semiring of types

```
A + B \cong B + A
(A + B) + C \cong A + (B + C)
A + 0 \cong 0 + A \cong A
A \times B \cong B \times A
(A \times B) \times C \cong A \times (B \times C)
A \times 1 \cong 1 \times A \cong A
A \times (B + C) \cong A \times B + A \times C
(\Delta^B)^C \cong \Delta^{B \times C}
```

```
      (A^B)^C \cong A^B \times ^C 
      A^{B+C} \cong A^B \times A^C 
      A^1 \cong A
```

Types in a programming language form a semiring with exponentiation...

- Up to type isomorphism...
- In the category of types and computable functions.

Type variables and parametricity

- A data structure can be defined as a type parameterized by one or more simpler types.
- Often called <u>generics</u> or <u>templates</u> when implemented in a language.
- In this case, a function being *computable* carries a lot of weight.
- Parameter types must be handled in a formulaic way.
- This restriction is useful: it's known as the parametricity theorem!

Metaprogramming and the semiring

- Algebraic types are definable with only products, sums, and fixpoints.
- Key result: by defining what should be done with products and sums, we can define a function on <u>arbitrary</u> algebraic types.
- (Optionally, handle exponents as well.)
- Metaprogramming facilities depend on programming language.

Example: Enumerating values of a type

enumerate(A + B) = enumerate(A) \cup enumerate(B)

enumerate(A × B) = { (x, y) | $x \in enumerate(A), y \in enumerate(B)$ }

Example: Poking Holes in Data Structures

If T is a type, let $D_{\chi}(T)$ be the type of data structures with one missing value of type X.

- $D_x(C) = 0$ (when X doesn't occur in C)
- D_X(X) = 1
- $D_{\chi}(U + V) = D_{\chi}(U) + D_{\chi}(V)$
- $D_{X}(U \times V) = U \times D_{X}(V) + D_{X}(U) \times V$
- $D_X(F(G(X)) = D_{G(X)}F(G(X)) \times D_XG(X)$

Example: Tries

A trie T(K, V) is an efficient map from K to V whose structure is dictated by K.

- T(1, V) = V + 1
- $T(A + B, V) = T(A, V) \times T(B, V)$
- $T(A \times B, V) = T(A, T(B, V))$

Types have algebraic structure.

We can exploit this structure for metaprogramming.

Categorical structure in software

Categories

- Objects
- Morphisms
- Identities
- Associative Composition

Category of Types

- Types
- Computable functions
- f(x) = x
- $(g \circ f)(x) = g(f(x))$

Functors

- $f: A \rightarrow B$
- map(f) : $T(A) \rightarrow T(B)$
- Examples:
 - Lists or other data structures
 - Optional values
 - Placeholders for future values (promises, lazy computations, etc.)

Monoidal / Applicative Functors

- $f: A \times B \rightarrow C$
- map(f) : T(A × B) -> T(C)
- $\operatorname{map}_2(f) : T(A) \times T(B) \to T(C)$
- Monoidal form: $zip : T(A) \times T(B) \rightarrow T(A \times B)$
- Applicative form: ap : $T(C^B) \rightarrow T(C)^{T(B)}$
 - Recall: $C^{A \times B} \cong (C^{B})^{A}$
- Most commonly used functors are applicative, but not always uniquely.

Monads and Kleisli Categories

- $f: A \rightarrow_T B$ aka, $A \rightarrow T(B)$ $g: B \rightarrow_T C$ aka, $B \rightarrow T(C)$
- $g \circ_T f : A \to_T C$ aka, $A \to T(C)$
- $\operatorname{id}_{X,T} : X \to_T X$ aka, $X \to T(X)$
- Theorem: T is a monad, and Kleisli categories are in 1-to-1 correspondence with monads.
- Applications: too many to type!

More Functor Structures

Traversable Functors

- Assume F is another applicative functor.
- traverse : $F(B)^A \rightarrow F(T(B))^{T(A)}$
- sequence : $T(F(A)) \rightarrow F(T(A))$
- Examples: Any data structure

Alternative Functors

- T is an applicative functor. Additionally:
- empty : T(A)
- $\Upsilon : T(A) \times T(A) \rightarrow T(A)$
- Examples: Optional, Parsers, anything nondeterminism or recoverable failure

Example: Interpreters via Free Structures

Given a functor F (algebraic data type with a type param) that defines desired operations:

- Add : $A \times A \rightarrow A$
- Negate : $A \rightarrow A$
- Scale : $\mathbb{R} \times A \rightarrow A$

The free monad generated by F defines a monad structure:

• Expr = Free(F)

If F is a functor, an F-algebra maps $F(X) \rightarrow X$.

eval : $F(\mathbb{R}) \rightarrow \mathbb{R}$ eval(Add(x, y)) = x + y eval(Negate(x)) = -x eval(Scale(k, x)) = x

An F-algebra defines an interpreter for the free monad.

 $interpret(eval): \mathbb{R}^{A} \rightarrow \mathbb{R}^{Expr(A)}$

Example: Compiling to Categories

There is a canonical embedding of lambda calculus in any Cartesian Closed Category.

Idea: (Conal Elliot)

- Compile a programming language to categorical expressions
- Abstracted over the choice of category!
- Choose a category that works for the desired application.

Examples:

- Extract data flow graphs from programs.
- Convert rich programming languages to custom hardware.
- Automatic differentiation
- Incremental evaluation
- Reasoning about programs with constraint solvers (e.g., SMT)

Categories abstract function-like ideas.

Standard categorical structures are often applicable to programming problems.

Questions / Discussion