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Linear Channels
My job revolves around statistical models of random linear
channels. Linear channels work like this:

• A complex tone s(t) = e2πift of frequency f is trasmitted.
• At position (x , y) on a receiving antenna aperture, the
received signal is

r(t) = T (x , y , f , t)e2πift .

• T is called the transfer function.
• More realistically, the transmitted complex signal is a
continuous linear combination of tones

s(t) =

∫
R
S(f )e2πiftdf

and the total received complex signal is

r(t) =

∫∫∫
R3

A(x , y)S(f )T (x , y , f , t)e2πiftdx dy df

for some antenna aperture weight function A(x , y).
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Random Linear Channels
• The transfer function T is modelled as a complex-valued
random process drawn from a known distribution.

• Modulo some strong assumptions, the distribution of T is
characterized by an autocovariance function

R(∆x ,∆y ,∆f ,∆t)

=
〈
T (x , y , f , t)T (x +∆x , y +∆y , f +∆f , t +∆t)

〉
• Notation: ⟨•⟩ denotes mean value.

• Notation: • denotes complex conjugation.

• When I can’t get away with such strong assumptions, I have
to think about higher-order moments like〈
T (x1, y1, f1, t1, )T (x2, y2, f2, t2, )T (x3, y3, f3, t3, )T (x4, y4, f4, t4)

〉
.
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Gaussian Functions

• Call a function g : Rn → R Gaussian if

g(x) = g(0) exp

(
−1

2
xTA x

)
for some real symmetric positive-definite n × n matrix A.

• Symmetric means the transpose AT equals A.
There is no loss of generality is assuming A is symmetric.

• Positive-definite means xTA x > 0 for all x ∈ Rn \ {0}.
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Gaussian Channel Models

• Because of the Central Limit Theorem, Gaussian
autocovariance functions arise naturally.

• A simple example:

R1(∆x ,∆y , . . .) = exp

(
−1

2

[
∆x ∆y

] [L−2
x 0
0 L−2

y

] [
∆x
∆y

]
− · · ·

)
= exp

(
−∆x2

2L2x
− ∆y2

2L2y
− · · ·

)
The parameters Lx and Ly are decorrelation lengths.

• R1 is (part of) a decent model for the autocovariance of the
warping of the wavefront of a microwave transmission that
just passed through the ionosphere, which has (practically)
random stripes of higher and lower indices of refraction.
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Pseudo-Gaussian Functions
• Call a function g : Rn → C pseudo-Gaussian if

g(x) = g(0) exp

(
−1

2
xTA x

)
for some complex symmetric n × n matrix A with
positive-definite real part ℜA.

• A pseudo-Gaussian is a Gaussian multiplied by a complex
oscillating function.

|g(x)| = |g(0)| exp
(
−1

2
xT (ℜA) x

)
arg(g(x)) = arg(g(0))− 1

2
arg(xT (ℑA) x)

• Why can’t we assume A is Hermitian (AT = A)?
A with a non-real diagonal is an important case.
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Pseudo-Gaussian Channel Models
• After that microwave passes through the ionosphere,

diffraction occurs: the warps in the wavefront interfere with
each other as they propagate through space or through the
lower atmosphere.

• To model this diffraction, autocovariance function R is
evolved from an initial value R(z = 0,∆x , . . .) = R1(∆x , . . .)
according to a differential equation like this:

0 =

(
∂

∂z
+

b

2i
∆f

∂2

∂(∆x)2
+ · · ·

)
R(z , . . .).

b is some positive (real) constant.
• The final value R(z = L, . . .) = R2(. . .) is a pseudo-Gaussian
with respect to (∆x ,∆y ,∆t):

R2(∆x , . . .) =
Lx√

L2x + ibL∆f
exp

(
− ∆x2

2(L2x + ibL∆f )
− · · ·

)
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Fourier Transforms

• The formula for R2 was found using Fourier transforms.

• A function s : Rn → C is Schwartz if all its partial derivatives
exist everywhere and decay superpolynomially:

lim
|x|→∞

|x|M ∂Ns(x)

∂xk1 · · · ∂xkN
= 0

for all M, N, and k1, . . . , kN .

• Pseudo-Gaussians are Schwartz.

• Define the Fourier transform Fs : Rn → C of s by

Fs(y) =

∫
Rn

exp(−iyTx)s(x)dx.

• Lemma. The Fourier transform of a Schwartz function is
another Schwartz function.
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Pseudo-Gaussians Transformed
• Main Lemma. If a complex symmetrix matrix A has
positive-definite real part, then all eigenvalues of A have
positive real parts. In particular, A is invertible.

• Theorem. The Fourier transform of pseudo-Gaussian g is
another pseudo-Gaussian.

• Proof.
1. g(x) = g(0) exp(−xTA x/2).
2. ∇g(x) = −g(x)A x.
3. iFg(y)y = −iA∇Fg(y).
4. −Fg(y)A−1y = ∇Fg(y).
5. Fg(y) = Fg(0) exp(−yTA−1 y/2).
6. Because Fg is Schwartz, ℜ(A−1) must be positive-definite.

• Corollary. If AT = A and ℜA is positive-definite, then ℜ(A−1)
is also positive-definite.

• But what is Fg(0)?

Fg(0) = g(0)

∫
Rn

exp(−xTA x/2)dx = ?
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Pseudo-Gaussian Integrals Motivated

Again, given AT = A and ℜA is positive-definite,∫
Rn

exp(−xTA x/2)dx = ?

• If A is diagonal, the solution is well-known.

• If A is block diagonal with 2x2 blocks, the solution is still not
too hard.

• So far, these cases have sufficed for my channel model work.

• But mathematicians love to generalize!

• Also, future work involving higher-order moments may require
the general case.
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Proof of the Main Lemma

1. Assume AT = A and xT (ℜA)x > 0 for all x ∈ Rn \ {0}.
2. Assume v ∈ Cn, Av = λv, and vTv = 1.

3. Use a clever formula for ℜλ:

0 < (ℜv)T (ℜA)(ℜv) + (ℑv)T (ℜA)(ℑv)

=
1

8

∑
+,−

(v ± v)(A+ A)(v ± v)

=
1

4

∑
+,−

(
λ+ λ±ℜ(λvTv)±ℜ(vTAv)

)
= ℜλ
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The Real Case

• Theorem. If A is an n × n real symmetric positive-definite
matrix, then∫

Rn

exp

(
−1

2
xTA x

)
dx =

(2π)n/2√
det(A)

> 0.

• Proof.

1. By the spectral theorem, A = QDQT where Q is orthogonal
and D is positive diagonal.

2. Rotating and rescaling via x = QD−1/2y , we have∫
Rn

exp

(
−1

2
xTA x

)
dx =

∫
Rn

exp

(
−1

2
yTy

)
dy√
det(D)

=
(2π)n/2√
det(A)

.
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The One-Dimensional Complex Case

• Theorem. If ℜa > 0, then∫
R
exp

(
−1

2
ax2

)
dx =

√
2π√
a

where ℜ
√
a > 0.

• Proof.

1. Let a = re iϕ with |ϕ| < π/2.
2. The integral exp(−rz2/2)dz along the circular arc z = Re it

from t = 0 to t = ϕ/2 goes to zero in the limit R → ∞.
3. Therefore, the Cauchy integral theorem lets us substitute

x = y/e iϕ/2 and then rotate the domain of integration back to
the real line.∫

R
exp

(
−1

2
ax2

)
dx =

∫
R
exp

(
−1

2
ry2

)
dy

e iϕ/2
=

√
2π√

re iϕ/2
.
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Comments on Extending the Proofs

• In the real case, the rotation Rn → Rn via the orthogonal
matrix Q preserved the integral.

• In the 1D complex case, the rotation R → e iϕ/2R ⊂ C
preserved the integral only because |ϕ| < π/2.

• Naively using ϕ+ 2π in place of ϕ erroneously multiplies the
integral by a factor of -1.

• For complex symmetric A, the closest thing to the spectral
theorem is the Takagi factorization A = UDUT with U
unitary (UUT = I ) and D real nonnegative diagonal.

• But an arbitrary unitary rotation Rn → URn ⊂ Cn will not
preserve the integral.

• Main Question. Can the Takagi factorization be improved
under the additional assumption that ℜA is positive definite?
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Complex Diagonal Examples

• Notation. If A is an n × n complex symmetric matrix and ℜA
is positive-definite, then define c(A) by

(2π)n/2

c(A)
=

∫
Rn

exp

(
−1

2
xTA x

)
dx

• Theorem. If D = diag(λ1, . . . , λn) and ℜλk > 0 for all k ,
then c(D) =

∏
k

√
λk where ℜ

√
λk > 0.

• c(D) is a square root of det(D) that depends on D, not just
on det(D):

1. det(diag(e2πi/5, e2πi/5, e2πi/5)) = e6πi/5.
2. c(diag(e2πi/5, e2πi/5, e2πi/5)) = e3πi/5.
3. det(diag(e−2πi/5, e−2πi/5, 1)) = e−4πi/5 = e6πi/5.
4. c(diag(e−2πi/5, e−2πi/5, 1)) = e−2πi/5 = −e3πi/5.
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Main Theorem

Assume A is an n × n complex symmetric matrix and ℜA is
positive-definite.

• Notation.

(2π)n/2

c(A)
=

∫
Rn

exp

(
−1

2
xTA x

)
dx

• Theorem. c(A) =
∏

k

√
λk where λ1, . . . , λn are the

eigenvalues of A and ℜ
√
λk > 0.

• Corollary. c(A)2 = det(A).

• I’ve numerically checked that the theorem holds for 104

random choices for A of size n × n, for each n ≤ 10.
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Proof of Main Theorem
1. The theorem holds for real symmetric matrices.
2. We can continuously deform ℜA to A by the straight-line

homotopy A(t) = ℜA+ tℑA, which preserves our hypotheses
AT = A and ℜA positive-definite.

3. By the main lemma, det(A) ̸= 0.

4. Because c(A)2 =
(∏

k

√
λk

)2
= det(A) ̸= 0, if both c(A) and∏

k

√
λk are continuous functions of A, then the homotopy

will preserve c(A) =
∏

k

√
λk .

5. A 7→ c(A) is a continuous because of its integral formula.
6.

∏
k

√
λk is a continuous function of the unordered n-tuple√

λ1, . . . ,
√
λn.

7. z →
√
z with ℜ

√
z > 0 is continuous on {z ∈ C | ℜz > 0}.

8. By the main lemma, ℜλk > 0.
9. The unordered n-tuple λ1, . . . , λn is a continuous function of

of the coefficients of det(λI − A), which in turn are
continuous functions of A.
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Comments on the Proof

• The proof is a continuity argument.

• A more algebraic proof would yield more algebraic insight.

• A more algebraic proof might lead to an improved Takagi
factorization.
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Motivation

• We know that c(A) =
∏

k

√
λk .

• But that is not the only way to compute c(A).

• Other algorithms might turn out to be helpful for finding a
more algebraic proof of the main theorem.

• At least one other algorithm is more efficient.
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A Direct Computation of c(A)

1. Let A = P + iS where P and S are real symmetric n × n
matrices and P is positive definite.

2. By the spectral theorem, P = QDQT where D is positive
diagonal and Q is orthogonal.

3. Rotating and rescaling via x = QD−1/2y , we have∫
Rn

exp

(
−1

2
xTA x

)
dx =

∫
Rn

exp

(
−1

2
yT (I + iB)y

)
dy√
det(D)

where B = D−1/2QTSQD−1/2.

4. By the spectral theorem again, B = VEV T where V is
orthogonal and E is real diagonal.
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A Direct Computation of c(A) (continued)

5. Rotating via y = Vz , we have∫
Rn

exp

(
−1

2
yT (I + iB)y

)
dy√
det(D)

=

∫
Rn

exp

(
−1

2
zT (I + iE )z

)
dz√
det(D)

=
1√

det(D)

∏
k

√
2π√

1 + iµk

where E = diag(µ1, . . . , µn) and ℜ
√
1 + iµk > 0.

6. c(A) =
√
det(D)

∏
k

√
1 + iµk .

Thus, c(A)2 = det(D) det(I + iE ) = det(P) det(I + iB) = det(A).
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A Cholesky-Type Block Factorization

Assume A is a complex symmetric matrix, that ℜA is
positive-definite, and that A divides into blocks as follows.

A =

[
E F
FT G

]

• If E is invertible, then

A =

[
I 0

FTE−1 I

] [
E 0
0 G − FTE−1F

] [
I E−1F
0 I

]
and, hence, det(A) = det(E ) det(G − FTE−1F ).

• Lemma. E is invertible. Moreover, ℜE and ℜ(G − FTE−1F )
are positive-definite.
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Divide and Conquer

Assume A =

[
E F
FT G

]
is an n × n complex symmetric matrix and

ℜA is positive-definite.
• Notation. Given b ∈ Cn, define

(2π)n/2

c(A,b)
=

∫
Rn+b

exp

(
−1

2
xTA x

)
dx.

• Lemma. c(A,b) = c(E , 0)c(G − FTE−1F , 0).
• Proof. Use induction on n and the change of variables[

x′

y′

]
=

[
x+ E−1Fy

y

]
corresponding to the factorization

A =

[
I 0

FTE−1 I

] [
E 0
0 G − FTE−1F

] [
I E−1F
0 I

]
.
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Again a Square Root of the Determinant

Assume A =

[
E F
FT G

]
is an n × n complex symmetric matrix and

ℜA is positive-definite.

• Notation.

(2π)n/2

c(A)
=

∫
Rn

exp

(
−1

2
xTA x

)
dx

• Alternative proof of c(A)2 = det(A):

1. Proceed by induction on n.
2. We already proved case n = 1.
3. For n > 1, use c(A) = c(E )c(G − FTE−1F ) and

det(A) = det(E ) det(G − FTE−1F ).
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Open Problems

1. Find a more algebraic proof that c(A) =
∏

k

√
λk with

ℜ
√
λk > 0.

2. Find an improvement of the Takagi factorization A = UDUT

of complex symmetric matrices under the assumption that ℜA
is positive-definite.
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