On Naimark's Problem for Graph Algebras

Kulumani M. Rangaswamy University of Colorado, Colorado Springs.

Rings and Wings Seminar

Dedicated to Professor Laszlo Fuchs on his 99th Birthday

э

 A C*-algebra A is a complete normed algebra (Banach algebra) over C with involution * satisfying ||x*|| = ||x|| and ||x*x|| = ||x||² for all x ∈ A.

- A C*-algebra A is a complete normed algebra (Banach algebra) over \mathbb{C} with involution * satisfying $||x^*|| = ||x||$ and $||x^*x|| = ||x||^2$ for all $x \in A$.
- A **representation** of a C*-algebra *A*, is a *-homomorphism from *A* to $B(\mathcal{H})$, the algebra of all bounded operators on a Hilbert space \mathcal{H} .

- A C*-algebra A is a complete normed algebra (Banach algebra) over \mathbb{C} with involution * satisfying $||x^*|| = ||x||$ and $||x^*x|| = ||x||^2$ for all $x \in A$.
- A representation of a C*-algebra A, is a *-homomorphism from A to B(H), the algebra of all bounded operators on a Hilbert space H.
- We say two representations λ : A → B(H) and μ : A → B(H) are unitary equivalent if there is a unitary operator u : H → H such that u*λ(a)u = μ(a) for all a ∈ A. Here, u is unitary means that u*u = uu* = 1. Unitary equivalence is an equivalence relation.

- A C*-algebra A is a complete normed algebra (Banach algebra) over \mathbb{C} with involution * satisfying $||x^*|| = ||x||$ and $||x^*x|| = ||x||^2$ for all $x \in A$.
- A representation of a C*-algebra A, is a *-homomorphism from A to B(H), the algebra of all bounded operators on a Hilbert space H.
- We say two representations λ : A → B(H) and μ : A → B(H) are unitary equivalent if there is a unitary operator u : H → H such that u*λ(a)u = μ(a) for all a ∈ A. Here, u is unitary means that u*u = uu* = 1. Unitary equivalence is an equivalence relation.
- If two representations $\lambda : A \to B(\mathcal{H})$ and $\mu : A \to B(\mathcal{H})$ are unitary equivalent, then $\ker(\lambda) = \ker(\mu)$.

• A representation $\lambda : A \to B(\mathcal{H})$ is called an **irreducible representation** if the only closed subspaces of \mathcal{H} invariant under $\lambda(A)$ are $\{0\}$ and \mathcal{H} .

- A representation λ : A → B(H) is called an irreducible representation if the only closed subspaces of H invariant underλ(A) are {0} and H.
- In 1948, Naimark proved that the C*-algebra K(H) of compact operators on a Hilbert space H possesses only one irreducible representation up to unitary equivalence.

- A representation λ : A → B(H) is called an irreducible representation if the only closed subspaces of H invariant underλ(A) are {0} and H.
- In 1948, **Naimark** proved that the C*-algebra $\mathcal{K}(\mathcal{H})$ of compact operators on a Hilbert space \mathcal{H} possesses only one irreducible representation up to unitary equivalence.
- Naimark's Question: Should any C*-algebra A with the above property be isomorphic to $\mathcal{K}(\mathcal{H})$ for some Hilbert space \mathcal{H} ?

• (1951) (Kaplansky): The answer to Naimark's question is YES, if A is a Type I C*-algebra (If $\lambda : A \to B(\mathcal{H})$ is any irreducible representation, then $\lambda(A) \supseteq \mathcal{K}(\mathcal{H})$).

- (1951) (Kaplansky): The answer to Naimark's question is YES, if A is a Type I C*-algebra (If $\lambda : A \to B(\mathcal{H})$ is any irreducible representation, then $\lambda(A) \supseteq \mathcal{K}(\mathcal{H})$).
- (1953) **Rosenberg** : YES, if *A* is a separable (in particular, a countable) C*-algebra.

- (1951) (Kaplansky): The answer to Naimark's question is YES, if A is a Type I C*-algebra (If $\lambda : A \to B(\mathcal{H})$ is any irreducible representation, then $\lambda(A) \supseteq \mathcal{K}(\mathcal{H})$).
- (1953) **Rosenberg** : YES, if *A* is a separable (in particular, a countable) C*-algebra.
- Partial solutions by several researchers such as **Diximier** (1960), **Fell** (1961), **Glimm** (1961). (separable + unique irred.repsn = Type I).

- (1951) (Kaplansky): The answer to Naimark's question is YES, if A is a Type I C*-algebra (If $\lambda : A \to B(\mathcal{H})$ is any irreducible representation, then $\lambda(A) \supseteq \mathcal{K}(\mathcal{H})$).
- (1953) **Rosenberg** : YES, if *A* is a separable (in particular, a countable) C*-algebra.
- Partial solutions by several researchers such as Diximier (1960), Fell (1961), Glimm (1961). (separable + unique irred.repsn = Type I).
- For quite sometime, it was not clear whether Naimark's problem for uncountable C*-algebras has a solution or not.

• After more than 40 years, in 2004 Akemann and Weaver used Jensen's **diamond axiom** (a combinatorial principle independent of ZFC) to provide a negative solution to Naimark's problem by constructing an \aleph_1 -generated C*-algebra with Naimark's property, but not isomorphic to $\mathcal{K}(\mathcal{H})$. They also showed that it is undecidable in ZFC whether there exists an \aleph_1 -generated C*-algebra with Naimark's property, but not isomorphic to $\mathcal{K}(\mathcal{H})$.

- After more than 40 years, in 2004 Akemann and Weaver used Jensen's **diamond axiom** (a combinatorial principle independent of ZFC) to provide a negative solution to Naimark's problem by constructing an \aleph_1 -generated C*-algebra with Naimark's property, but not isomorphic to $\mathcal{K}(\mathcal{H})$. They also showed that it is undecidable in ZFC whether there exists an \aleph_1 -generated C*-algebra with Naimark's property, but not isomorphic to $\mathcal{K}(\mathcal{H})$.
- Not much progress was made until 2017, when **N. Suri and M. Tomforde** considered the Naimark's problem in the context of graph C*-algebras and showed that Naimark's problem has a positive solution for special type of graph C*-algebras $C^*(E)$ called AF algebras and also when E is countable.

- After more than 40 years, in 2004 Akemann and Weaver used Jensen's **diamond axiom** (a combinatorial principle independent of ZFC) to provide a negative solution to Naimark's problem by constructing an \aleph_1 -generated C*-algebra with Naimark's property, but not isomorphic to $\mathcal{K}(\mathcal{H})$. They also showed that it is undecidable in ZFC whether there exists an \aleph_1 -generated C*-algebra with Naimark's property, but not isomorphic to $\mathcal{K}(\mathcal{H})$.
- Not much progress was made until 2017, when **N. Suri and M. Tomforde** considered the Naimark's problem in the context of graph C*-algebras and showed that Naimark's problem has a positive solution for special type of graph C*-algebras $C^*(E)$ called AF algebras and also when E is countable.
- In this talk, instead of considering special cases, we will use graphical techniques to directly solve Naimark's problem for arbitrary graph C*-algebras.

• A (directed) graph $E = (E^0, E^1, r, s)$ consists of two sets E^0 and E^1 together with maps $r, s : E^1 \to E^0$. The elements of E^0 are called *vertices* and the elements of E^1 *edges*.

- A (directed) graph $E = (E^0, E^1, r, s)$ consists of two sets E^0 and E^1 together with maps $r, s : E^1 \to E^0$. The elements of E^0 are called *vertices* and the elements of E^1 *edges*.
- A vertex v is called a **sink** if it emits no edges and a vertex v is called an **infinite emitter** if it emits infinitely many edges. A **regular vertex** is a vertex which emits a non-empty finite set of edges. A vertex which is an infinite emitter or a sink is called a **singular vertex**.

- A (directed) graph E = (E⁰, E¹, r, s) consists of two sets E⁰ and E¹ together with maps r, s : E¹ → E⁰. The elements of E⁰ are called *vertices* and the elements of E¹ edges.
- A vertex v is called a **sink** if it emits no edges and a vertex v is called an **infinite emitter** if it emits infinitely many edges. A **regular vertex** is a vertex which emits a non-empty finite set of edges. A vertex which is an infinite emitter or a sink is called a **singular vertex**.
- A path is either a vertex or a finite sequence of edges μ = e₁e₂ ··· e_n with n ≥ 1, where r(e_i) = s(e_{i+1}) for all i = 1, ···, n − 1. The set of all vertices on the path μ is denoted by μ⁰.

- A (directed) graph E = (E⁰, E¹, r, s) consists of two sets E⁰ and E¹ together with maps r, s : E¹ → E⁰. The elements of E⁰ are called *vertices* and the elements of E¹ edges.
- A vertex v is called a **sink** if it emits no edges and a vertex v is called an **infinite emitter** if it emits infinitely many edges. A **regular vertex** is a vertex which emits a non-empty finite set of edges. A vertex which is an infinite emitter or a sink is called a **singular vertex**.
- A path is either a vertex or a finite sequence of edges μ = e₁e₂ ··· e_n with n ≥ 1, where r(e_i) = s(e_{i+1}) for all i = 1, ···, n − 1. The set of all vertices on the path μ is denoted by μ⁰.
- A path µ = e₁...e_n in E is closed if r(e_n) = s(e₁), in which case µ is said to be based at the vertex s(e₁). The closed path µ is called a cycle if it does not pass through any of its vertices twice, that is, if s(e_i) ≠ s(e_j) for every i ≠ j.

ヘロト 不得下 不足下 不足下

• If there is a path from vertex u to a vertex v, we write $u \ge v$.

э

- If there is a path from vertex u to a vertex v, we write $u \ge v$.
- A non-empty subset D of vertices is said to be downward directed, if for any u, v ∈ D, there exists a w ∈ D such that u ≥ w and v ≥ w.

- If there is a path from vertex u to a vertex v, we write $u \ge v$.
- A non-empty subset D of vertices is said to be downward directed, if for any u, v ∈ D, there exists a w ∈ D such that u ≥ w and v ≥ w.
- A subset H of E^0 is called **hereditary** if, whenever $v \in H$ and $w \in E^0$ satisfy $v \ge w$, then $w \in H$. A hereditary set H is **saturated** if, for any regular vertex v, $r(s^{-1}(v)) \subseteq H$ implies $v \in H$

Let E = (E⁰, E¹, r, s) be an arbitrary graph. The graph C*-algebra C*(E) is the universal C*-algebra generated by mutually orthogonal projections {p_v : v ∈ E⁰} and partial isometries {s_e : e ∈ E¹} with mutually orthogonal ranges called Cuntz-Krieger family, satisfying

- Let E = (E⁰, E¹, r, s) be an arbitrary graph. The graph C*-algebra C*(E) is the universal C*-algebra generated by mutually orthogonal projections {p_v : v ∈ E⁰} and partial isometries {s_e : e ∈ E¹} with mutually orthogonal ranges called Cuntz-Krieger family, satisfying
- (1) $s_e^*s_e = p_{r(e)}$ for all $e \in E^1$

Let E = (E⁰, E¹, r, s) be an arbitrary graph. The graph C*-algebra C*(E) is the universal C*-algebra generated by mutually orthogonal projections {p_v : v ∈ E⁰} and partial isometries {s_e : e ∈ E¹} with mutually orthogonal ranges called Cuntz-Krieger family, satisfying

$$ullet$$
 (1) $s_e^*s_e=p_{r(e)}$ for all $e\in E^1$

• (2) $s_e s_e^* \le p_{s(e)}$ for all $e \in E^1$

• Let $E = (E^0, E^1, r, s)$ be an arbitrary graph. The graph C*-algebra $C^*(E)$ is the universal C*-algebra generated by mutually orthogonal projections $\{p_v : v \in E^0\}$ and partial isometries $\{s_e : e \in E^1\}$ with mutually orthogonal ranges called Cuntz-Krieger family, satisfying

• (1) $s_e^*s_e = p_{r(e)}$ for all $e \in E^1$

- (2) $s_e s_e^* \leq p_{s(e)}$ for all $e \in E^1$
- (3) $p_v = \sum_{e \in s^{-1}(v)} s_e s_e^*$, for any regular vertex v.

• If $\lambda : A \to B(\mathcal{H})$ is an irreducible representation, then ker (λ) is called a **primitive ideal** of A.

- If $\lambda : A \to B(\mathcal{H})$ is an irreducible representation, then ker (λ) is called a **primitive ideal** of A.
- **Known**: Every proper closed ideal (including {0}) of a C*-algebra is the intersection of primitive ideals.

- If $\lambda : A \to B(\mathcal{H})$ is an irreducible representation, then ker (λ) is called a **primitive ideal** of A.
- **Known**: Every proper closed ideal (including {0}) of a C*-algebra is the intersection of primitive ideals.
- **Proposition 1**: If a C*-algebra A has exactly one equivalence class of irreducible representations, then A must be a simple algebra.

- If λ : A → B(H) is an irreducible representation, then ker(λ) is called a primitive ideal of A.
- **Known**: Every proper closed ideal (including {0}) of a C*-algebra is the intersection of primitive ideals.
- **Proposition 1**: If a C*-algebra A has exactly one equivalence class of irreducible representations, then A must be a simple algebra.
- Proof: Since there is only one irreducible representation up to equivalence and since equivalent representations have the same kernel, A will then have only one primitive ideal P. But any proper closed ideal I of A is the intersection of primitive ideals of A and so I = P. In particular, the zero ideal {0} = P = I. Thus A is simple.

• **Theorem 2:** (A. Kumjian, D. Pask and I. Raeburn (1998)) A simple C*-algebra $A = C^*(E)$ must be one of two types:

- **Theorem 2:** (A. Kumjian, D. Pask and I. Raeburn (1998)) A simple C^* -algebra $A = C^*(E)$ must be one of two types:
- EITHER A is an **AF-algebra**, that is, A is a direct limit of finite dimensional C*-algebras,

- **Theorem 2:** (A. Kumjian, D. Pask and I. Raeburn (1998)) A simple C*-algebra $A = C^*(E)$ must be one of two types:
- EITHER A is an **AF-algebra**, that is, A is a direct limit of finite dimensional C*-algebras,
- OR A is **purely infinite simple** (simple+every non-zero one-sided ideal contains an **infinite idempotent** $e: Ae = Af \oplus Ag$ with $Ae \cong Af$).

- **Theorem 2:** (A. Kumjian, D. Pask and I. Raeburn (1998)) A simple C*-algebra $A = C^*(E)$ must be one of two types:
- EITHER A is an **AF-algebra**, that is, A is a direct limit of finite dimensional C*-algebras,
- OR A is purely infinite simple (simple+every non-zero one-sided ideal contains an infinite idempotent $e: Ae = Af \oplus Ag$ with $Ae \cong Af$).
- **Theorem 3**: (2017, **N. Suri and M. Tomforde):** Naimark's question has a positive answer if $C^*(E)$ is a simple AF-algebra.

- **Theorem 2:** (A. Kumjian, D. Pask and I. Raeburn (1998)) A simple C*-algebra $A = C^*(E)$ must be one of two types:
- EITHER A is an **AF-algebra**, that is, A is a direct limit of finite dimensional C*-algebras,
- OR A is purely infinite simple (simple+every non-zero one-sided ideal contains an infinite idempotent $e: Ae = Af \oplus Ag$ with $Ae \cong Af$).
- Theorem 3: (2017, N. Suri and M. Tomforde): Naimark's question has a positive answer if C*(E) is a simple AF-algebra.
- **Theorem 4**: (A.L.T. Paterson-W. Szymanski) $C^*(E)$ is simple if and only if the graph E is downward directed, contains no proper non-empty hereditary saturated subset of vertices, and $u \ge w$ for every vertex u and every singular vertex w.
• In this talk, I first give characterizing conditions on the graph E under which $C^*(E) \cong \mathcal{K}(\mathcal{H})$ for some Hilbert space \mathcal{H} . The graphical approach enables us to obtain a streamlined proof that Naimark's question has a positive answer for arbitrary graph C*-algebras $C^*(E)$.

- In this talk, I first give characterizing conditions on the graph E under which C^{*}(E) ≅ K(H) for some Hilbert space H. The graphical approach enables us to obtain a streamlined proof that Naimark's question has a positive answer for arbitrary graph C*-algebras C^{*}(E).
- Also, we characterize $C^*(E)$ having finite or countable infinite number of irreducible representations (up to unitary equivalence).

- In this talk, I first give characterizing conditions on the graph E under which C^{*}(E) ≅ K(H) for some Hilbert space H. The graphical approach enables us to obtain a streamlined proof that Naimark's question has a positive answer for arbitrary graph C*-algebras C^{*}(E).
- Also, we characterize $C^*(E)$ having finite or countable infinite number of irreducible representations (up to unitary equivalence).
- If time permits, we will state and prove the algebraic version of Naimark's problem for Leavitt path algebras.

- In this talk, I first give characterizing conditions on the graph E under which C^{*}(E) ≅ K(H) for some Hilbert space H. The graphical approach enables us to obtain a streamlined proof that Naimark's question has a positive answer for arbitrary graph C*-algebras C^{*}(E).
- Also, we characterize $C^*(E)$ having finite or countable infinite number of irreducible representations (up to unitary equivalence).
- If time permits, we will state and prove the algebraic version of Naimark's problem for Leavitt path algebras.
- A perhaps interesting conclusion is: Given a graph E, Naimark's problem has a positive solution for $C^*(E) \Leftrightarrow$ Naimark's problem (algebraic version) has a positive solution for $L_{\mathcal{K}}(E)$.

Two infinite paths p = e₁e₂ ··· e_n ··· and q = f₁f₂ ··· f_n ··· in a graph E are said to be shift-tail equivalent or tail-equivalent, if there exist positive integers m, n such that e_{m+i} = f_{n+i} for all i ≥ 0.

Two infinite paths p = e₁e₂ ··· e_n ··· and q = f₁f₂ ··· f_n ··· in a graph E are said to be shift-tail equivalent or tail-equivalent, if there exist positive integers m, n such that e_{m+i} = f_{n+i} for all i ≥ 0.

• Tail equivalence among infinite paths is an equivalence relation and the equivalence class of all paths tail-equivalent to an infinite path p is denoted by [p].

- Tail equivalence among infinite paths is an equivalence relation and the equivalence class of all paths tail-equivalent to an infinite path *p* is denoted by [*p*].
- As we shall see, tail equivalent classes [p] of infinite paths p give rise to irreducible representations of $C^*(E)$ similar to the way irreducible representations are constructed for Leavitt path algebras.

Theorem 5:(T.M. Carlsen and A. Sims - 2019) Let E be an arbitrary graph. For each tail-equivalent class [p] of infinite paths in E and each $z \in \mathbb{T}$ (the unit circle in the complex plane), there is an irreducible representation $\pi_{p,z} : C^*(E) \longrightarrow B(\ell^2([p]))$ such that, for all $q \in [p], v \in E^0$ and $e \in E^1$, $\pi_{p,z}(p_v)(q) = q$ or 0 according as v = s(q) or not; $\pi_{p,z}(s_e)(q) = zeq$ or 0 according as r(e) = s(q) or not. If $z, t \in \mathbb{T}$ with $z \neq t$ and p, q are infinite paths with $[p] \neq [q]$, then $\pi_{p,z}$ and $\pi_{q,t}$ are not unitary equivalent.

"Distinct equivalence classes of infinite paths in E yield distinct inequivalent irreducible representations for $C^*(E)$ "

• To give a graphical characterization of $\mathcal{K}(\mathcal{H})$, we need the following concepts.

э

- To give a graphical characterization of $\mathcal{K}(\mathcal{H})$, we need the following concepts.
- For any vertex $v \in E$, the tree $T(v) = \{w \in E^0 : v \ge w\}$.

- To give a graphical characterization of $\mathcal{K}(\mathcal{H})$, we need the following concepts.
- For any vertex $v \in E$, the tree $T(v) = \{w \in E^0 : v \ge w\}$.
- We say a vertex v has *bifurcation* or v is a **bifurcation vertex** if v emits two or more edges.

- To give a graphical characterization of K(H), we need the following concepts.
- For any vertex $v \in E$, the tree $T(v) = \{w \in E^0 : v \ge w\}$.
- We say a vertex v has bifurcation or v is a bifurcation vertex if v emits two or more edges.
- A vertex v is called a line point if T(v) contains no bifurcating vertices and no cycles. Thus T(v) becomes, when we add all the edges between any two vertices in T(v), a straight line path like ·v=v1 → ·v2 → ·v3 · → ··· which becomes a finite path if T(v) contains a sink. In particular, a sink itself is a line point.

• To show $C^*(E) \cong \mathcal{K}(\mathcal{H})$, we use following important facts about $\mathcal{K}(\mathcal{H})$.

э

- To show $C^*(E) \cong \mathcal{K}(\mathcal{H})$, we use following important facts about $\mathcal{K}(\mathcal{H})$.
- If $\{v_i : i \in I\}$ is an orthonormal basis of \mathcal{H} , then $\mathcal{K}(\mathcal{H})$ is generated by a set of **matrix units** R_{ij} , $(i, j \in I)$, that is, R_{ij} satisfy for all $i, j, k, l \in I$, $R_{ij}R_{kl} = R_{il}$ or 0 according as j = k or not and, further, $R_{ij}^* = R_{ji}$. Here, R_{ij} is a rank-1 operator on \mathcal{H} given by $R_{ij}(h) = \langle h, v_j \rangle v_i$ for all $i, j \in I$ and $h \in \mathcal{H}$.

- To show $C^*(E) \cong \mathcal{K}(\mathcal{H})$, we use following important facts about $\mathcal{K}(\mathcal{H})$.
- If $\{v_i : i \in I\}$ is an orthonormal basis of \mathcal{H} , then $\mathcal{K}(\mathcal{H})$ is generated by a set of **matrix units** R_{ij} , $(i, j \in I)$, that is, R_{ij} satisfy for all $i, j, k, l \in I$, $R_{ij}R_{kl} = R_{il}$ or 0 according as j = k or not and, further, $R_{ij}^* = R_{ji}$. Here, R_{ij} is a rank-1 operator on \mathcal{H} given by $R_{ij}(h) = \langle h, v_j \rangle v_i$ for all $i, j \in I$ and $h \in \mathcal{H}$.
- **Theorem 6**: (Raeburn, Corollary A-9 and Remark A-10 [5]) If a C*-algebra $A \neq 0$ is generated by a set of non-zero matrix units, then $A \cong \mathcal{K}(\mathcal{H})$ for a suitable \mathcal{H} .

• **Theorem 7:** Let *E* be an arbitrary graph. Then a graph C*-algebra $A = C^*(E)$ is isomorphic to $\mathcal{K}(\mathcal{H})$ if and only if *E* contains no cycles, no infinite emitters, the vertex set E^0 is downward directed and is the hereditary saturated closure of a line point *v*.

- Theorem 7: Let E be an arbitrary graph. Then a graph C*-algebra $A = C^*(E)$ is isomorphic to $\mathcal{K}(\mathcal{H})$ if and only if E contains no cycles, no infinite emitters, the vertex set E^0 is downward directed and is the hereditary saturated closure of a line point v.
- **Outline of Proof**: The conditions on *E* imply that *A* is simple (by Theorem 4) and so *A* coincides with the closed ideal generated by *v* (by *T*(*v*)).

- Theorem 7: Let E be an arbitrary graph. Then a graph C*-algebra $A = C^*(E)$ is isomorphic to $\mathcal{K}(\mathcal{H})$ if and only if E contains no cycles, no infinite emitters, the vertex set E^0 is downward directed and is the hereditary saturated closure of a line point v.
- **Outline of Proof**: The conditions on *E* imply that *A* is simple (by Theorem 4) and so *A* coincides with the closed ideal generated by *v* (by *T*(*v*)).
- Case 1: T(v) = v, a sink. Then $C^*(E)$ is generated by the set of matrix units $\{\alpha\beta^* : r(\alpha) = v = r(\beta), \alpha, \beta \text{ paths in } E\}$.

- **Theorem 7:** Let *E* be an arbitrary graph. Then a graph C*-algebra $A = C^*(E)$ is isomorphic to $\mathcal{K}(\mathcal{H})$ if and only if *E* contains no cycles, no infinite emitters, the vertex set E^0 is downward directed and is the hereditary saturated closure of a line point *v*.
- **Outline of Proof**: The conditions on *E* imply that *A* is simple (by Theorem 4) and so *A* coincides with the closed ideal generated by *v* (by *T*(*v*)).
- Case 1: T(v) = v, a sink. Then $C^*(E)$ is generated by the set of matrix units $\{\alpha\beta^* : r(\alpha) = v = r(\beta), \alpha, \beta \text{ paths in } E\}$.
- Case 2: v is a line point, not a sink, with T(v) =

 $v_{i} = v_{1} \longrightarrow v_{2} \longrightarrow v_{3} \longrightarrow v_{4} \longrightarrow \cdots$ For each $i, j \in \mathbb{N}$, let p_{ij} be the unique path connecting v_{i} to v_{j} . Define $x_{ij} = p_{ij}$ or p_{ij}^{*} according as $i \leq j$ or $i \geq j$. Then $C^{*}(E)$ is generated by the set of matrix units $\{s_{\alpha_{i}}s_{x_{ij}}s_{\beta_{j}}: \alpha_{i}, \beta_{j} \text{ paths in } E, r(\alpha_{i}) = v_{i}, r(\beta_{j}) = v_{j}, i, j \in \mathbb{N} \text{ and } \alpha_{i}, \beta_{j} \text{ contain no other vertices } v_{k} \in T(v)\}.$

- **Theorem 7:** Let *E* be an arbitrary graph. Then a graph C*-algebra $A = C^*(E)$ is isomorphic to $\mathcal{K}(\mathcal{H})$ if and only if *E* contains no cycles, no infinite emitters, the vertex set E^0 is downward directed and is the hereditary saturated closure of a line point *v*.
- **Outline of Proof**: The conditions on *E* imply that *A* is simple (by Theorem 4) and so *A* coincides with the closed ideal generated by *v* (by *T*(*v*)).
- Case 1: T(v) = v, a sink. Then $C^*(E)$ is generated by the set of matrix units $\{\alpha\beta^* : r(\alpha) = v = r(\beta), \alpha, \beta \text{ paths in } E\}$.
- Case 2: v is a line point, not a sink, with T(v) =

 $v_{i} \to v_{2} \to v_{3} \to v_{4} \to \cdots$. For each $i, j \in \mathbb{N}$, let p_{ij} be the unique path connecting v_{i} to v_{j} . Define $x_{ij} = p_{ij}$ or p_{ij}^{*} according as $i \leq j$ or $i \geq j$. Then $C^{*}(E)$ is generated by the set of matrix units $\{s_{\alpha_{i}}s_{x_{ij}}s_{\beta_{j}}: \alpha_{i}, \beta_{j} \text{ paths in } E, r(\alpha_{i}) = v_{i}, r(\beta_{j}) = v_{j}, i, j \in \mathbb{N} \text{ and } \alpha_{i}, \beta_{j} \text{ contain no other vertices } v_{k} \in T(v)\}.$

In both cases, by Raeburn's Theorem (Theorem 6), C^{*}(E) ≅ K(H) for a suitable Hilbert space H.

 Remark: From the proof of Theorem 7, it is clear that there are only two types of graphs E for which C^{*}(E) ≅ K(H).

э

- Remark: From the proof of Theorem 7, it is clear that there are only two types of graphs E for which C^{*}(E) ≅ K(H).
- E is a row-finite acyclic graph which is

- Remark: From the proof of Theorem 7, it is clear that there are only two types of graphs E for which C^{*}(E) ≅ K(H).
- E is a row-finite acyclic graph which is
- Either (i) a comet with a sink as its head (Example 1);

- Remark: From the proof of Theorem 7, it is clear that there are only two types of graphs E for which C^{*}(E) ≅ K(H).
- E is a row-finite acyclic graph which is
- Either (i) a comet with a sink as its head (Example 1);
- Or (ii) is just a tail-equivalent class [p] of an infinite path p with s(p) a line point. (Example 2)

Example 1: "comet like" graph

3

æ

• In order to answer Naimark's question for C*(E), we need the following results.

3

- In order to answer Naimark's question for C*(E), we need the following results.
- Theorem 8: (Pere Ara and Ranga (2015)) Suppose E is an arbitrary graph such that (i) there are cycles c, d in E with c ≠ d, but c and d have a common vertex v; OR (ii) E contains no line points and no cycles without exits. Then there are uncountably many tail-equivalence classes of infinite paths in E.

- In order to answer Naimark's question for C*(E), we need the following results.
- Theorem 8: (Pere Ara and Ranga (2015)) Suppose E is an arbitrary graph such that (i) there are cycles c, d in E with c ≠ d, but c and d have a common vertex v; OR (ii) E contains no line points and no cycles without exits. Then there are uncountably many tail-equivalence classes of infinite paths in E.
- Using Carlsen-Sims theorem (Theorem 5), we then get the following:

- In order to answer Naimark's question for C*(E), we need the following results.
- Theorem 8: (Pere Ara and Ranga (2015)) Suppose E is an arbitrary graph such that (i) there are cycles c, d in E with c ≠ d, but c and d have a common vertex v; OR (ii) E contains no line points and no cycles without exits. Then there are uncountably many tail-equivalence classes of infinite paths in E.
- Using Carlsen-Sims theorem (Theorem 5), we then get the following:
- **Corollary 9**: If a graph E satisfies one of the conditions in the above theorem, then $C^*(E)$ possesses uncountably many irreducible representations no two of which is unitary equivalent.

Theorem

Let E be an arbitrary graph. TFAE for $A = C^*(E)$:

(a) A has, up to unitary equivalence, exactly one irreducible representation; (b) E is a row-finite acyclic graph such that the vertex set E^0 is downward directed and is the hereditary saturated closure of a single line point v. (c) $A \cong K(\mathcal{H})$, the C*-algebra of compact operators on a suitable Hilbert space \mathcal{H} .

Corollary

If a graph C*-algebra A has, up to unitary equivalence, exactly one irreducible representation, then A must be an AF-algebra.

Proof.

Enough to show (a) => (b). Assume (a). By Proposition 1, $A = C^*(E)$ is simple and by Theorem 5, (Pattterson-Szimanski), the graph E is then downward directed, satisfies Condition (K), contains no proper non-empty hereditary saturated subset of vertices, and u > w for every vertex u and every singular vertex w. If there is a cycle c based at a vertex v, by Condition (K), v is the base of another cycle $d \neq c$ and Corollary 9 will imply that A has uncountably many inequivalent irreducible representations, a contradiction. So E is acyclic. We claim that Econtains no infinite emitters. Indeed, if w is an infinite emitter and e is one of the edges emitted by w with r(e) = u, then as noted above, $u \geq w$, so there is a path p from u to w. Then ep gives rise to a cycle, a contradiction. Further, Theorem 8 implies that E contains line points. Hence Condition (b) holds.

Theorem

Let κ be a finite or countably infinite ordinal. Then $C^*(E)$ has at most κ many unitary equivalence classes of irreducible representations if and only if $C^*(E)$ is an AF-algebra which is the union of a smooth well-ordered ascending chain of guage-invariant ideals indexed by ordinals $\alpha < \kappa$

$$\{0\} = I_0 \subsetneq \cdots \varsubsetneq I_{\alpha} \varsubsetneq I_{\alpha+1} \varsubsetneq \cdots \qquad (\alpha < \kappa)$$

such that, for each $\alpha < \kappa$, $I_{\alpha+1}/I_{\alpha}$ is simple and $I_{\alpha+1}/I_{\alpha} \cong \mathcal{K}(\mathcal{H}_{\alpha+1})$, the algebra of compact operators on a Hilbert space $\mathcal{H}_{\alpha+1}$.

Then $C^*(E)$ has exactly two non-equivalent irreducible representations. If I is the gauge invariant ideal generated by $H = \{v_1, v_2, v_3,\}$, then $I \cong \mathcal{K}(\mathcal{H})$ for a suitable Hilbert space \mathcal{H} and $C^*(E)/I \cong \mathbb{C}$.

Example 4: The "Pyramid" graphs enable us to construct for each cardinal κ , finite or infinite, a graph C*-algebra $C^*(E)$ possessing exactly κ many non-equivalent irreducible representations.
Theorem: Let *E* be an arbitrary directed graph and *K* be a field. Then the following are equivalent for the Leavitt path algebra $L := L_K(E)$:

(a) Any two simple left/right *L*-modules are unitary equivalent;

(b) Any two simple left/right *L*-modules are isomorphic;

(c) E is a row-finite acyclic graph such that the vertex set E^0 is downward directed and is the hereditary saturated closure of a single line point;

(d) $L \cong M_{\Lambda}(K)$ for some non-empty index set Λ ;

(e) L is isomorphic to the algebra of all finite rank linear transformations on a vector space over the field K.

Corollary: Given a graph *E*, Naimark's problem has a positive solution in $C^*(E) \iff$ Naimark's problem (algebraic version) has a positive solution in $L_K(E)$.

G. Abrams, P. Ara and M. Siles Molina, Leavitt Path Algebras (book)

- C. Akemann and N. Weaver, Consistency of a counterexample to Naimark's problem. Proc. Natl. Acad. Sci. U. S. A. vol. 101(20), (2004), 7522–7525.
- P. Ara and K.M. Rangaswamy, Leavitt path algebras with at most countably many irreducible representations, Rev. Mat. Ibroam. vol. 31 (2015), +1263 - 1276.
- T. Bates, J.H. Hong, I. Raeburn and W. Szymański, The ideal structure of C*-algebras of arbitrary graphs, Illinois J. Math. vol. 46 (2002), 133 - 166.
- T.M. Carlsen and A. Sims, On Hong and Szymański's description of the primitive ideal space of graph algebras, arXiv:1512.02850v3[math.OA] 3 May 2019.
- J. Diximier, Suri les C* -alg´ebres (French), Bull. Soc. Math. France vol. 88 (1960), 95–112

J.M.G. Fell, C -algebras with smooth dual, Illinois J. Math. vol. 4: – २००० Kulumani M. RangaswamyUniversity of Color. On Naimark's Problem for Graph Algebras — Rings and Wings Seminar 29 / 31

- J.H. Hong and W. Szymański, The primitive ideal space of the C*-algebras of infinite graphs, J. Math. Soc. Japan, vol. 56 (2004), 45 - 64.
- I. Kaplansky, The structure of certain operator algebras, Trans. Amer. Math. Soc. vol. 70 (1951), 219–255.
- M. A. Naimark, On a problem in the theory of rings with involution, Uspehi Matem. Nauk vol. 6 (1951), 160-164.
- A.L.T. Patterson, Graph inverse semigroups, groupoids and their C*-algebras, J. Operator Theory, vol. 48 (2002), 645 662.
- I. Raeburn, Graph Algebras, CBMS, vol. 103, American Math. Soc. (2005).
- A. Rosenberg, The number of irreducible representations of simple rings with no minimal ideals, Amer. J. Math, vol. 75 (1953), 523 - 570

- N. Suri and M. Tomforde, Naimark's problem for AF graph C*-algebras, Illinois J. Math. vol. 61 (2017), 479 -495.
- W. Szymański, Simplicity of Cuntz-Krieger algebras of infinite matrices, Pacific J. Math vol. 199 (2001), 249 256.