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A C*-algebra A is a complete normed algebra (Banach algebra) over
C with involution ∗ satisfying ‖x∗‖ = ‖x‖ and ‖x∗x‖ = ‖x‖2 for all
x ∈ A.

A representation of a C*-algebra A, is a *-homomorphism from A to
B(H), the algebra of all bounded operators on a Hilbert space H.
We say two representations λ : A→ B(H) and µ : A→ B(H) are
unitary equivalent if there is a unitary operator u : H → H such
that u∗λ(a)u = µ(a) for all a ∈ A. Here, u is unitary means that
u∗u = uu∗ = 1. Unitary equivalence is an equivalence relation.

If two representations λ : A→ B(H) and µ : A→ B(H) are unitary
equivalent, then ker(λ) = ker(µ).
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A representation λ : A→ B(H) is called an irreducible
representation if the only closed subspaces of H invariant
underλ(A) are {0} and H.

In 1948, Naimark proved that the C*-algebra K(H) of compact
operators on a Hilbert space H possesses only one irreducible
representation up to unitary equivalence.

Naimark’s Question: Should any C*-algebra A with the above
property be isomorphic to K(H) for some Hilbert space H ?
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History

(1951) (Kaplansky): The answer to Naimark’s question is YES, if A
is a Type I C*-algebra (If λ : A→ B(H) is any irreducible
representation, then λ(A) ⊇ K(H)).

(1953) Rosenberg : YES, if A is a separable (in particular, a
countable) C*-algebra.

Partial solutions by several researchers such as Diximier (1960), Fell
(1961), Glimm (1961). (separable + unique irred.repsn = Type I).

For quite sometime, it was not clear whether Naimark’s problem for
uncountable C*-algebras has a solution or not.
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After more than 40 years, in 2004 Akemann and Weaver used
Jensen’s diamond axiom (a combinatorial principle independent of
ZFC) to provide a negative solution to Naimark’s problem by
constructing an ℵ1-generated C*-algebra with Naimark’s property, but
not isomorphic to K(H). They also showed that it is undecidable in
ZFC whether there exists an ℵ1-generated C*-algebra with Naimark’s
property, but not isomorphic to K(H).

Not much progress was made until 2017, when N. Suri and M.
Tomforde considered the Naimark’s problem in the context of graph
C*-algebras and showed that Naimark’s problem has a positive
solution for special type of graph C*-algebras C ∗(E ) called AF
algebras and also when E is countable.

In this talk, instead of considering special cases, we will use graphical
techniques to directly solve Naimark’s problem for arbitrary graph
C*-algebras.
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Graph Preliminaries

A (directed) graph E = (E 0,E 1, r , s) consists of two sets E 0 and E 1

together with maps r , s : E 1 → E 0. The elements of E 0 are called
vertices and the elements of E 1 edges.

A vertex v is called a sink if it emits no edges and a vertex v is called
an infinite emitter if it emits infinitely many edges. A regular
vertex is a vertex which emits a non-empty finite set of edges. A
vertex which is an infinite emitter or a sink is called a singular vertex.
A path is either a vertex or a finite sequence of edges µ = e1e2 · · · en
with n ≥ 1, where r(ei ) = s(ei+1) for all i = 1, · · ·, n− 1. The set of
all vertices on the path µ is denoted by µ0.

A path µ = e1 . . . en in E is closed if r(en) = s(e1), in which case µ
is said to be based at the vertex s(e1). The closed path µ is called a
cycle if it does not pass through any of its vertices twice, that is, if
s(ei ) 6= s(ej ) for every i 6= j .
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If there is a path from vertex u to a vertex v , we write u ≥ v .

A non-empty subset D of vertices is said to be downward directed, if
for any u, v ∈ D, there exists a w ∈ D such that u ≥ w and v ≥ w .
A subset H of E 0 is called hereditary if, whenever v ∈ H and
w ∈ E 0 satisfy v ≥ w , then w ∈ H. A hereditary set H is saturated
if, for any regular vertex v , r(s−1(v)) ⊆ H implies v ∈ H
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Let E = (E 0,E 1, r , s) be an arbitrary graph. The graph C*-algebra
C ∗(E ) is the universal C*-algebra generated by mutually orthogonal
projections {pv : v ∈ E 0} and partial isometries {se : e ∈ E 1} with
mutually orthogonal ranges called Cuntz-Krieger family, satisfying

(1) s∗e se = pr (e) for all e ∈ E 1

(2) se s∗e ≤ ps(e) for all e ∈ E 1

(3) pv = ∑
e∈s−1(v )

se s∗e , for any regular vertex v .
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If λ : A→ B(H) is an irreducible representation, then ker(λ) is
called a primitive ideal of A.

Known: Every proper closed ideal (including {0}) of a C*-algebra is
the intersection of primitive ideals.

Proposition 1: If a C*-algebra A has exactly one equivalence class of
irreducible representations, then A must be a simple algebra.

Proof: Since there is only one irreducible representation up to
equivalence and since equivalent representations have the same
kernel, A will then have only one primitive ideal P. But any proper
closed ideal I of A is the intersection of primitive ideals of A and so
I = P. In particular, the zero ideal {0} = P = I . Thus A is simple.
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Theorem 2: (A. Kumjian, D. Pask and I. Raeburn (1998)) A simple
C*-algebra A = C ∗(E ) must be one of two types:

EITHER A is an AF-algebra, that is, A is a direct limit of finite
dimensional C*-algebras,

OR A is purely infinite simple (simple+every non-zero one-sided
ideal contains an infinite idempotent e: Ae = Af ⊕ Ag with
Ae ∼= Af ).
Theorem 3: (2017, N. Suri and M. Tomforde): Naimark’s
question has a positive answer if C ∗(E ) is a simple AF-algebra.

Theorem 4: (A.L.T. Paterson-W. Szymanski) C ∗(E ) is simple if and
only if the graph E is downward directed, contains no proper
non-empty hereditary saturated subset of vertices, and u ≥ w for
every vertex u and every singular vertex w.
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In this talk, I first give characterizing conditions on the graph E under
which C ∗(E ) ∼= K(H) for some Hilbert space H. The graphical
approach enables us to obtain a streamlined proof that Naimark’s
question has a positive answer for arbitrary graph C*-algebras C ∗(E ).

Also, we characterize C ∗(E ) having finite or countable infinite
number of irreducible representations (up to unitary equivalence).

If time permits, we will state and prove the algebraic version of
Naimark’s problem for Leavitt path algebras.

A perhaps interesting conclusion is: Given a graph E , Naimark’s
problem has a positive solution for C ∗(E ) ⇔ Naimark’s problem
(algebraic version) has a positive solution for LK (E ).
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Two infinite paths p = e1e2 · · · en · ·· and q = f1f2 · · · fn · ·· in a
graph E are said to be shift-tail equivalent or tail-equivalent, if
there exist positive integers m, n such that em+i = fn+i for all i ≥ 0.
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Tail equivalence among infinite paths is an equivalence relation and
the equivalence class of all paths tail-equivalent to an infinite path p
is denoted by [p].

As we shall see, tail equivalent classes [p] of infinite paths p give rise
to irreducible representations of C ∗(E ) similar to the way irreducible
representations are constructed for Leavitt path algebras.
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Constructing irreducible representations

Theorem 5:(T.M. Carlsen and A. Sims - 2019) Let E be an arbitrary
graph. For each tail-equivalent class [p] of infinite paths in E and each
z ∈ T (the unit circle in the complex plane), there is an irreducible
representation πp,z : C ∗(E ) −→ B(`2([p])) such that, for all
q ∈ [p], v ∈ E 0 and e ∈ E 1,
πp,z (pv )(q) = q or 0 according as v = s(q) or not ;
πp,z (se )(q) = zeq or 0 according as r(e) = s(q) or not.
If z , t ∈ T with z 6= t and p, q are infinite paths with [p] 6= [q], then πp,z
and πq,t are not unitary equivalent.
"Distinct equivalence classes of infinite paths in E yield distinct
inequivalent irreducible representations for C ∗(E )"
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To give a graphical characterization of K (H), we need the following
concepts.

For any vertex v ∈ E , the tree T (v) = {w ∈ E 0 : v ≥ w}.
We say a vertex v has bifurcation or v is a bifurcation vertex if v
emits two or more edges.

A vertex v is called a line point if T (v) contains no bifurcating
vertices and no cycles. Thus T (v) becomes, when we add all the
edges between any two vertices in T (v), a straight line path like
·v=v1 → ·v2 → ·v3 · → · · · which becomes a finite path if T (v)
contains a sink. In particular, a sink itself is a line point.
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To show C ∗(E ) ∼= K(H), we use following important facts about
K(H).

If {vi : i ∈ I} is an orthonormal basis of H, then K(H) is generated
by a set of matrix units Rij , (i , j ∈ I ), that is, Rij satisfy for all
i , j , k, l ∈ I , RijRkl = Ril or 0 according as j = k or not and, further,
R∗ij = Rji . Here, Rij is a rank-1 operator on H given by
Rij (h) =< h, vj > vi for all i , j ∈ I and h ∈ H.
Theorem 6: (Raeburn, Corollary A-9 and Remark A-10 [5]) If a
C*-algebra A 6= 0 is generated by a set of non-zero matrix units, then
A ∼= K(H) for a suitable H.
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Theorem 7: Let E be an arbitrary graph. Then a graph C*-algebra
A = C ∗(E ) is isomorphic to K(H) if and only if E contains no
cycles, no infinite emitters, the vertex set E 0 is downward directed
and is the hereditary saturated closure of a line point v .

Outline of Proof: The conditions on E imply that A is simple (by
Theorem 4) and so A coincides with the closed ideal generated by v
(by T (v)).

Case 1: T (v) = v , a sink. Then C ∗(E ) is generated by the set of
matrix units {αβ∗ : r(α) = v = r(β), α, β paths in E}.
Case 2: v is a line point, not a sink, with T (v) =
·v=v1 −→ ·v2 −→ ·v3 −→ ·v4 −→ · · · . For each i , j ∈N, let pij be
the unique path connecting vi to vj . Define xij = pij or p∗ij according
as i ≤ j or i ≥ j . Then C ∗(E ) is generated by the set of matrix units
{sαi sxij sβj : αi , βj paths in E , r(αi ) = vi , r(βj ) = vj , i , j ∈N and
αi , βj contain no other vertices vk ∈ T (v)}.
In both cases, by Raeburn’s Theorem (Theorem 6), C ∗(E ) ∼= K(H)
for a suitable Hilbert space H.
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Remark: From the proof of Theorem 7, it is clear that there are only
two types of graphs E for which C ∗(E ) ∼= K(H).

E is a row-finite acyclic graph which is

Either (i) a comet with a sink as its head (Example 1);
Or (ii) is just a tail-equivalent class [p] of an infinite path p with s(p)
a line point. (Example 2)
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Example 1: "comet like" graph
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Example 2:
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In order to answer Naimark’s question for C*(E), we need the
following results.

Theorem 8: (Pere Ara and Ranga (2015)) Suppose E is an arbitrary
graph such that (i) there are cycles c , d in E with c 6= d, but c and
d have a common vertex v; OR (ii) E contains no line points and no
cycles without exits. Then there are uncountably many
tail-equivalence classes of infinite paths in E .

Using Carlsen-Sims theorem (Theorem 5), we then get the following:

Corollary 9: If a graph E satisfies one of the conditions in the above
theorem, then C ∗(E ) possesses uncountably many irreducible
representations no two of which is unitary equivalent.
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Theorem
Let E be an arbitrary graph. TFAE for A = C ∗(E ):
(a) A has, up to unitary equivalence, exactly one irreducible representation;
(b) E is a row-finite acyclic graph such that the vertex set E 0 is downward
directed and is the hereditary saturated closure of a single line point v .
(c) A ∼= K (H), the C*-algebra of compact operators on a suitable Hilbert
space H.

Corollary
If a graph C*-algebra A has, up to unitary equivalence, exactly one
irreducible representation, then A must be an AF-algebra.
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Proof.
Enough to show (a) => (b). Assume (a). By Proposition 1, A = C ∗(E )
is simple and by Theorem 5, (Pattterson-Szimanski), the graph E is then
downward directed, satisfies Condition (K), contains no proper non-empty
hereditary saturated subset of vertices, and u ≥ w for every vertex u and
every singular vertex w . If there is a cycle c based at a vertex v , by
Condition (K), v is the base of another cycle d 6= c and Corollary 9 will
imply that A has uncountably many inequivalent irreducible
representations, a contradiction. So E is acyclic. We claim that E
contains no infinite emitters. Indeed, if w is an infinite emitter and e is
one of the edges emitted by w with r(e) = u, then as noted above,
u ≥ w , so there is a path p from u to w . Then ep gives rise to a cycle, a
contradiction. Further, Theorem 8 implies that E contains line points.
Hence Condition (b) holds.
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C*(E) with countably many irreducible representations

Theorem
Let κ be a finite or countably infinite ordinal. Then C ∗(E ) has at most κ
many unitary equivalence classes of irreducible representations if and only
if C ∗(E ) is an AF-algebra which is the union of a smooth well-ordered
ascending chain of guage-invariant ideals indexed by ordinals α < κ

{0} = I0  · · ·  Iα  Iα+1  · · · (α < κ)

such that, for each α < κ, Iα+1/Iα is simple and Iα+1/Iα ∼= K(Hα+1), the
algebra of compact operators on a Hilbert space Hα+1.
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Example 3: Let E be the "Infinite Clock"

·v1 ·v2
↖ ↑ ↗
(∞) ·v −→ ·v3

↓ ↘
· ·

.

Then C ∗(E ) has exactly two non-equivalent irreducible representations. If
I is the gauge invariant ideal generated by H = {v1, v2, v3, .....}, then I ∼=
K(H) for a suitable Hilbert space H and C ∗(E )/I ∼= C.
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Example 4: The "Pyramid" graphs enable us to construct for each
cardinal κ, finite or infinite, a graph C*-algebra C ∗(E ) possessing exactly
κ many non-equivalent irreducible representations.
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Theorem: Let E be an arbitrary directed graph and K be a field. Then
the following are equivalent for the Leavitt path algebra L := LK (E ):
(a) Any two simple left/right L-modules are unitary equivalent;
(b) Any two simple left/right L-modules are isomorphic;
(c) E is a row-finite acyclic graph such that the vertex set E 0 is downward
directed and is the hereditary saturated closure of a single line point;
(d) L ∼= MΛ(K ) for some non-empty index set Λ;
(e) L is isomorphic to the algebra of all finite rank linear transformations
on a vector space over the field K .
Corollary: Given a graph E , Naimark’s problem has a positive solution in
C ∗(E ) ⇐⇒ Naimark’s problem (algebraic version) has a positive solution
in LK (E ).
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